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This document contains supporting material for the pa-
per Learning Across Domains and Devices: Style-driven
Source-Free Domain Adaptation in Clustered Federated
Learning. Here, we include additional details on the fed-
erated splits employed in the paper along with analyses of
the convergence stability of our approach when compared
to competing strategies adapted to our federated setup. Fi-
nally, we show some qualitative segmentation maps.

1. Additional Details on Splits
In this section, we complete the description of how the

federated splits used in our experiments are generated.
Cityscapes. We used the heterogeneous federated split

of Cityscapes [3] proposed in [4]. The split comprises 144
clients, where each client has between 10 and 45 samples
belonging to a single city from the dataset. Further details
on the distribution of the number of images per client are
shown in Figure 1.

CrossCity. We generated the federated split of the
CrossCity [2] dataset by assigning 27 ± 10 images taken
from the same city to each client, where the number of sam-
ples per client is uniformly sampled. The final distributions
of the number of images per client are shown in Figure 2
both per city and overall. We observe how the distributions
are balanced across the four cities.

Mapillary. We propose a novel split for the Mapillary
Vistas [6] dataset via a clustering procedure based on the
GPS coordinates of the images. We started from the origi-
nal training set of 18000 images and discarded 31 of them
missing the GPS coordinates. Then, we run the k-Means al-
gorithm over the GPS coordinates six times, one per conti-
nent. The k-Means algorithm is constrained to assign every
client a random number of images in the range 16 and 100.
The procedure resulted in 357 clients, where each client ob-
served samples from only one continent. The final distri-
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Figure 1: Histogram of images per client in the federated
Cityscapes split.

butions of the number of images per client are shown in
Figure 3. Unlike the other scenarios, we observe a large
variability across the distributions obtained in different con-
tinents due to the highly imbalanced nature of the dataset.
Also, note that the two entries with higher values, 16 and
100, correspond to the extreme values of the constrained
k-Means process.

2. Additional Details on the Style-Based Client
Clustering

In a realistic FL setting, different clients may observe
similar samples, e.g. self-driving cars in the same region
are likely to collect similar images, thus they are not subject
to statistical heterogeneity during the server aggregation.
Therefore, we proposed a style-driven client clustering as
one of the foundational parts of our algorithm. During the
FL optimization stage, we employed the identified commu-
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(b) Rome
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(c) Taipei
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(d) Tokyo
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Figure 2: Histogram of images per clients in the proposed federated CrossCity split.
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(b) Asia
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(c) Europe
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(d) North America
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(e) Oceania
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(f) South America
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(g) Cumulative
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Figure 3: Histogram of images per clients in the proposed federated Mapillary Vistas split.

nities in a clustered and layer-aware aggregation policy on
the server side.

First of all, we remark that the four clusters identified by
the styles extracted from the images contain mostly clients
belonging to one single geographical location (i.e., city).
Table 1 shows the number of clients belonging to a spe-
cific city assigned to each cluster for the federated Cross-
City dataset. Overall, the clustering accuracy, considering
each cluster a city, is equal to 68%. Therefore, there is not
a one-to-one correspondence of the clusters with the cities.

Table 1: Number of clients belonging to a specific city as-
signed to each cluster for the federated CrossCity split.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Rio 7 1 70 38
Rome 76 6 22 17
Taipei 6 103 0 9
Tokyo 26 8 10 73

To investigate this aspect, we show in Figure 4 some
samples taken from the clients belonging to each of the
four clusters in the federated CrossCity dataset. Here, we
observe an interesting finding: despite being generated via

style information only, the clusters tend to show scenes with
similar semantics. For instance, Cluster 1 contains clients
having images of large and trafficked streets, and grayish
sky. Cluster 2 contains clients having images of narrow
streets with little to no vegetation, many buildings, a few
parked cars and whitish sky. Cluster 3 contains clients hav-
ing images of empty roads with green surrounding vegeta-
tion. Cluster 4 contains clients having images from sunny
weather and blue sky, narrow streets with no traffic and
green vegetation.

Finally, we show in Figure 5 some samples taken from
the clients belonging to each of four clusters in the feder-
ated Mapillary dataset. Unlike as for CrossCity, here we
do not appreciate a clear assignment as the number of clus-
ters is different from the number of towns or continents.
Therefore, we observe that here the clustering is much more
appearance-related, according to the style of the images.

For instance, Cluster 1 contains clients having cloudy
and foggy images where the visual appearance is grayish.
Cluster 2 contains clients having grayish sky and yellowish
buildings with some similar semantics across clients. Clus-
ter 3 contains clients having images at the sunset or sunrise
where the light scatters yellow shadows. Cluster 4 contains



Cluster 1 Cluster 2 Cluster 3 Cluster 4

Tokyo - Client 93 

Rome - Client 2

Taipei - Client 40

Taipei - Client 96

Tokyo - Client 1

Taipei - Client 110

Rio - Client 47

Tokyo - Client 23

Rome - Client 38

Rio - Client 4

Tokyo - Client 7

Tokyo - Client 111

Figure 4: Sample images in each cluster for the federated CrossCity split.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
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Figure 5: Sample images in some clusters for the federated Mapillary split.

clients having images with predominant blue colors in the
sky.

3. Implementation Details

The proposed method is implemented in PyTorch, the
code and federated splits are available at https://
github.com/Erosinho13/LADD.

The semantic segmentation network used is DeepLab-
V3 [1] with Mobilenet-V2 [7] as the backbone and width
multiplier equal to 1, representing a good compromise in
terms of performance and lightness, important aspects to

consider for real-world applications, such as self-driving
cars. On each communication round, the selected clients
are trained sequentially, allowing to perform the complete
simulation and reproduce the results on a single GPU with
32GB of VRAM (we used a NVIDIA RTX 3090).

4. Qualitative Results

We provide some qualitative results in the form of seg-
mentation maps of target images generated by the segmen-
tation model subject to different adaptation schemes. Fig-
ures 6, 7 and 8 refer to the 3 adaptation setups chosen



(a) RGB (b) GT (c) Source Only (d) FedAvg [5] + Self-Tr. (e) LADD (all)

Road Sidewalk Building T. Light T. Sign Vegetation Sky
Person Rider Car Bus Bicycle Unlabeled

Figure 6: GTA5→CrossCity qualitative results.

(a) RGB (b) GT (c) Source Only (d) FedAvg [5] + Self-Tr. (e) LADD (all)

Road Sidewalk Building Wall Fence Pole T. Light T. Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorbike Bicycle Unlabeled

Figure 7: GTA5→Cityscapes qualitative results.

for experimental evaluations, with respectively CrossCity,
Cityscapes and Mapillary as target datasets. We compare
the naı̈ve source only training (3rd columns in all the afore-
mentioned figures) and the baseline federated adaptation
strategy (4th columns), based on FedAvg[5] aggregation
and local self-training, with the proposed LADD (when
cluster-specific aggregation is extended to all the segmen-
tation network layers) (last columns). For fair comparison
we employ the same pretraining for FedAvg and LADD.
By inspecting the segmentation maps produced by the dif-
ferent adaptation strategies, we notice how the source only
maps show inconsistent and noisy predictions, where se-
mantically similar classes are confused, such as sidewalk
and road or terrain in all the reported samples. Local self-
training and standard FedAvg aggregation at server-side
partially mitigate the prediction accuracy drop caused by
domain shift between source and target data. Nonetheless,

we observe that the adapted model still tends to mistake
semantically-similar classes such as sidewalk and road in
the first sample of Figure 6. The proposed regularized lo-
cal training leads to more robust local optimization, which
otherwise tends to suffer from unsteady behavior, due to
the small amount of available training data and the lack
of any form of supervision (even from the source domain)
at the client side. This, along with the cluster-specific se-
mantically aware aggregation mechanism, results into less
noisy and more accurate predictions as we can see in the
last columns of the figures.

5. Additional Quantitative Results

Finally, we report additional results in the form of per-
class IoUs achieved when different modules of our frame-
work are enabled. Once more, results are reported with



(a) RGB (b) GT (c) Source Only (d) FedAvg [5] + Self-Tr. (e) LADD (all)
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Figure 8: GTA5→Mapillary qualitative results.

CrossCity (Table 2), Cityscapes (Table 3) and Mapillary
(Table 4) as target datasets, in terms of mean and standard
deviation computed over the last 10% rounds.

When enabled, we observe that each module improves
the overall mIoU score, which is also generally shared by
the individual IoU scores of the semantic classes in the dif-
ferent experimental setups.

In addition, in Figure 9 we report the learning curves
as a result of federated optimization under different
configurations of the proposed LADD method in the
GTA→CrossCity setup. When only ST is employed in
the client-side optimization, the training is extremely unsta-
ble, showing a small initial burst of performance followed
by a rapid decrease after few rounds. When adding KD
and then SWAt, the training curves become progressively
more robust and stable, achieving the best results when KD
and SWAt are joined by the cluster-specific aggregation,
in either classifier-exclusive or full model configuration of
cluster-specific parameters. We finally remark how LADD
in its complete configuration is characterized by steady and
converging learning curves, unaffected by diverging phe-
nomena.
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Table 2: CrossCity IoU by class and mIoU (%).
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Table 3: Cityscapes IoU by class and mIoU (%).
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Table 4: Mapillary Vistas IoU by class and mIoU (%).
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Figure 9: Comparison of learning curves in the CrossCity federated split.


