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1. Training Requirements of Previous Methods

Due to the weak self-supervisory signal of the thermal
image, most previous works [6} 18, [10] utilize auxiliary self-
supervision source (i.e., RGB images) to train a depth esti-
mation network.

Kim et al. [l6] exploited spatial image reconstruction with
paired stereo RGB images and an estimated depth map from
a thermal image. For this purpose, they design a sensor sys-
tem consisting of two RGB cameras, one thermal camera,
and a beam splitter for the principal axis alignment of RGB-
thermal cameras [2]. We itemize the specifications and re-
quirements of their proposed method.

* Estimate a depth map from a given thermal image.

* RGB stereo images for the spatial image reconstruc-
tion loss.

e Two RGB cameras, one thermal camera, and a beam
splitter, which is used for the camera coordinate align-
ment.

* Synchronized image acquisition.

Lu et al. [8] also needs a specialized hardware system
that consists of very closely located RGB stereo and thermal
stereo cameras. They exploit an image translation network
to synthesize a thermal-like left image from a left RGB im-
age. After that, the spatial reconstruction loss between the
thermal-like left and real right thermal images is used to
train the depth network. The depth network takes a right
thermal image and initial depth map estimated from stereo
RGB images to estimate a depth map. We itemize the spec-
ifications and requirements of their proposed method.

» Estimate a depth map from a given thermal image and
initial depth map.

¢ Left RGB image and right thermal image for the spatial
image reconstruction loss.

» Stereo RGB images are used to estimate initial depth
map via a stereo matching algorithm.

¢ Two RGB cameras and one thermal camera, which is
closely located with the one RGB camera.

» Synchronized image acquisition.

Shin et al. [10] utilizes a temporal reconstruction loss
with paired RGB-thermal images to train single-view depth
and multiple-view pose networks. They utilize temporal im-
age reconstruction loss of RGB and thermal sequences with
a depth and pose estimated from thermal images. For this
purpose, they proposed a forward depth and pose warp-
ing module that translates the coordinate system of depth
map and relative camera pose from thermal image plane to
the RGB image plane in a differentiable way. In this for-
ward warping process, they need an extrinsic matrix be-
tween RGB and thermal cameras. We itemize the specifi-
cations and requirements of their proposed method.

» Estimate a depth map and relative camera pose from a
given thermal image sequence.

e Temporal RGB and thermal image sequences for the
temporal image reconstruction loss.

* One RGB camera and one thermal camera.

» Synchronized image acquisition / Extrinsic calibration
between RGB and thermal cameras.

Compared to the previous methods, our proposed
method doesn’t requires any extra constraints such as spe-
cialized hardware (i.e., beam splitter) [6], fixed sensor po-
sitioning [8]], extrinsic calibration [10]], and synchronized
image acquisition [6, 18, [10]]. The proposed method only re-
quires unpaired RGB and thermal image sequences to train
monocular depth network of thermal image. For this pur-
pose, the proposed training framework effectively exploits
both self-supervised learning of unpaired multi-spectral im-
ages and feature-level adversarial adaptation between multi-
spectral images.



2. ViViD Dataset

We utilize ViViD benckmark dataset [7] to evaluate our
proposed method. ViViD dataset [[7]] provides various sen-
sor data streams; a thermal camera, an RGB-D camera,
an event camera, and Lidar information. Also, the dataset
consists of 10 indoor sequences and 4 outdoor sequences.
Each sequence is taken under different lighting and mo-
tion conditions. Depending on the strength of the move-
ment, they define robust as a slow-motion sequence that
doesn’t contain any dynamic movement, aggressive as a
fast-motion sequence that contains lots of dynamic move-
ment, and unstable as a mixture of robust and aggressive.
Also, they define global and day as a well-lit lighting con-
dition with a complete light system, local as a relatively
weak light condition with a few light sources, and dark and
night as no external light source. However, there is some
weak light source in the outdoor night scene.

Shin et al. [10] split the dataset into the in/outdoor
training-and-testing subsets to train and validate a monocu-
lar depth network. Their indoor training set consists of five
sequences with well-light conditions; indoor-robust-global,
indoor-robust-local,  indoor-aggressive-global, indoor-
unstable-global, and indoor-unstable-local. They make
two indoor testing sets; one is a well-lit test set, and the
other one is a bad-light (i.e., dark) test set. The indoor
well-lit testing set consists of two sequences; indoor-robust-
varying and well-lit images of indoor-aggressive-local.
The indoor bad-light testing set consists of three se-
quences; indoor-robust-dark, indoor-aggressive-dark, and
indoor-unstable-dark.

The outdoor division is also similar; they divide the
outdoor set into well-light and bad-light conditions. The
outdoor training set contains the day sequences; outdoor-
robust-dayl and outdoor-robust-day2. Outdoor testing set
contain the night sequences; outdoor-robust-nightl and
outdoor-robust-night2. The total data samples of each train-
ing and testing dataset are as follows. The indoor training
set consists of 2,124 RGB and thermal image pairs. The in-
door bad-light testing set consists of 1,201 pairs, and the
well-lit testing set consists of 478 pairs. The outdoor train-
ing set consists of 2,213 pairs. The outdoor testing set con-
sists of 2,019 pairs.

3. Evaluation Metric

We utilized the depth evaluation metrics commonly used
to measure the accuracy and error of depth estimation
results [[11, 3L 9]. Also, we applied NYU v2 [11] and
KITTT [4] evaluation settings for indoor and outdoor evalu-
ation set, respectively. The depth evaluation metric measure
the difference between the ground-truth depth Dy, and the
predicted depth from our network D,.q on the valid pixel
set V of Dgy;. Since the monocular depth network estimate

arelative scale depth, the scale of D is used to recover the
scale of D,,.q before measuring the differences.

4. Further Discussion of Experimental Results
4.1. Adversarial Multi-spectral Domain Adaptation

Here, we further describe the effect of feature-level do-
main adaptation between multi-spectral images. As de-
scribed in the main paper, we have two options to provide
self-supervision via domain adaptation; prediction-level do-
main adaptation (i.e., depth map) and feature-level domain
adaptation (i.e., feature vector).

4.1.1 Prediction-level Adversarial Domain Adaptation

Prediction-level domain adaptation minimizes the domain
gap between the depth maps predicted from RGB and ther-
mal images instead of feature maps. Therefore, the losses
(Lqady and Lg; ) take depth maps of each modality as an in-
put instead of feature maps and are propagated to the depth
decoder and feature encoder. However, the prediction-level
domain adaptation leads to marginal performance improve-
ment compared to feature-level adaptation (See Table2 of
main manuscript). We believe this is because, during the
back-propagating process, the adversarial loss is getting
weakened and not enough to train the thermal encoder.
Also, the depth decoder is less affected by the prediction-
level adversarial loss since the decoder already leverages
sufficient training signal from self-supervised losses of un-
paired RGB-thermal videos.

4.1.2 Feature-level Adversarial Domain Adaptation

On the other hand, feature-level domain adaptation (i.e., (3)
of Table2) brings high performance boosting. We found the
feature-level domain adaptation explicitly guides the ther-
mal extractor to encompass representative feature extraction
ability via adversarial loss between RGB and thermal fea-
tures. The feature map visualization also supports this result
as shown in Fig.

Baseline model trained with thermal image reconstruc-
tion loss (See Table2) tends to extract homogeneous and
monotonous feature maps, compared to the RGB image fea-
ture f,4p. Thermal image contains almost the same structure
information compared to an RGB image. However, its con-
trast between structures is too weak to provide enough self-
supervision signal. Therefore, the weak self-supervision
signal leads to a weak feature representation ability.

On the other hand, the proposed adversarial multi-
spectral feature adaptation leads to extracting informative
and high-textured feature maps similar to RGB feature
maps, as shown in (b) and (c) of Fig. E} Also, this rep-
resentative feature map leads to the edge-preserved depth
estimation results, as shown in Fig. E}
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Figure 1: Qualitative comparison of the feature maps (f;, and f ). From right to left, we visualizes half channel of ond
scale feature map for Baseline model (a), thermal encoder of Ours (b), and RGB encoder of Ours (c). Without our proposed
training method, the thermal encoder tends to extract homogeneous and monotonous feature maps. On the other hand, the
proposed method allows the thermal encoder to extract information and high-textured feature maps similar to RGB feature

maps via adversarial feature adaptation.
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Figure 2: Qualitative comparison of depth estimation results on ViViD dataset [7]. Our method demonstrates clean and
sharp depth map results via adversarial feature adaptation and self-supervised learning of unpaired multi-spectral video,
compared to previous state-of-the-art self-supervised depth networks. *We visualize RGB images to show light conditions.



4.2. Self-supervised Learning of Thermal Videos

As shown in Fig.[2] Bian et al. [1]], which is trained with
thermal video only, shows un-delightful results especially
in the indoor scenario. We found this is caused by the high-
level noise of indoor thermal images. Differ from the out-
door scene, indoor scene generally has a tiny temperature
range (i.e., most objects have a similar temperature). There-
fore, in the process of raw thermal image visualization, the
sensor noise is also amplified, as shown in the indoor ther-
mal images of Fig.[2]

In order to train the network based on these kinds of im-
ages, we need to filter out or handle the noisy pixels for
accurate image reconstruction loss. However, we found the
per-pixel auto-mask scheme used in Bian et al. [1]] highly
affected by the high-level noise and hard to filter out the
noisy pixel. On the other hand, the original auto-mask im-
plementation [5]] that calculates the mask based on the com-
bination of SSIM and L1 loss shows more reliable results.
Therefore, we follow the original auto-mask implementa-
tion [5] to handle the noisy indoor thermal images.
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