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1 Problem Statement

Wu et al. [1] and Wadhwa et al. [2] have defined and initiated the problem of motion magnification. Let, an image I(x, t),
where x is spatial coordinates and t is time, can be expressed as the function of motion δ(x, t) : I(x, t) = f(x+ δ(x, t))
such that I(x, 0) = f(x). Then the magnified image Ĩ(x, t) is defined as

Ĩ(x, t) = f(x+ (1 + α)δ(x, t)) (1)

where, α decides the amount of magnification. The aim is to magnify motion signal, while ignoring the noise. To select

the signal of interest δ̃(x, t), [3], [2] and [4] used the hand-crafted bandpass filters B(.), such that δ̃(x, t) = B(δ(x, t)).
Hand designed filter based methods [3], [2], [4] are unable to ignore noise and other motion signals of large amplitude

in the bandpass region. Also, they require the prior information about the signal of interest. By using learnable filters,

we can process δ(x, t) with B̃(.) signal selector (which learns its properties based on input, output relation). Let, Ft and

Ft−1 are the input images which contain δ(x) motion signal such that Ft = Ft−1(x + δ(x)). As we consider only two

frames at a time, in δ(x, t), t parameter is ignored and the output Fo can be generated using Eq. (2).

Fo ≈ Ft−1(x+ (1 + α)B̃(δ(x))) (2)

Two frame input architecture reduces the network complexity and number of parameters [5].

2 Additional Experiments

When the deep learning method is not trained directly with temporal filters, using temporal filters on intermediate features

can produce incorrect results [5]. So to avoid that, video is first pre-processed with temporal filter to suppress unwanted

motion. For this, [2] method’s output at small magnification factor ( magnification factor=4) is given as an input to our

method. Visual results are shown in supplementary video. Figure S 1, shows the intermediate features which highlight

the motion parts. As different temporal filter inputs features, highlight different motion parts.
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Table 1: Parameters used for result generation. All the results are generated with variables and steps given by the respective

authors. Source code and pre-trained model are downloaded from their official page, click here [25] [19] [18] [23].

Methods Video Magnification Factor Frequency

Ours (M1,M2) Cat toy 15 N/A

Ours (M1,M2) Gun 15 N/A

Ours (M1,M2) Drill 10 N/A

Ours (M1,M2) Balloon 10 N/A

Ours (M1,M2) baby 20 N/A

Ours (M1,M2) guitar 4 N/A

Ours (M1,M2) Physical Accuracy 10 N/A

Ours(M1,M2) Circle videos with different backgrounds 50 N/A

Oh et al Cat toy 10 N/A

Oh et al Gun 10 N/A

Oh et al Drill 10 N/A

Oh et al Balloon 10 N/A

Oh et al baby 20 2.5 Hz

Oh et al Physical Accuracy 5 N/A

Oh et al Circle videos with different backgrounds 60 N/A

Jerk-Aware Cat toy 10 3

Jerk-Aware Gun 10 20

Jerk-Aware Drill 25 3

Jerk-Aware Balloon 25 3

Jerk-Aware baby 50 2.5

Jerk-Aware Physical Accuracy 20 15

Jerk-Aware Circle videos with different backgrounds 200 15

Anisotropy Cat toy 100 3

Anisotropy Gun 100 20

Anisotropy Drill 100 3

Anisotropy Balloon 100 3

Anisotropy baby 150 2.5

Anisotropy Physical Accuracy 200 3

Anisotropy Circle videos with different backgrounds 400 15

Acceleration Cat toy 4 3

Acceleration Gun 10 20

Acceleration Drill 4 3

Acceleration Balloon 4 3

Acceleration baby 100 2.5

Acceleration Physical Accuracy 20 15

Acceleration Circle videos with different backgrounds 200 15
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https://github.com/12dmodel/deep_motion_mag
https://github.com/moppppu/VideoMagnificationInTheWild
https://github.com/moppppu/JerkAwareVideoAccelerationMagnification
https://github.com/acceleration-magnification/sources


Figure S 1: Intermediate features (row-2,3) of our proposed lightweight network, highlighting the motion in the red

bounding box. (a) shows the baby video motion features. Baby have minute chest motion while breathing. (b )and (c)

highlight the motion part E-string (82Hz), A-string(110Hz) of guitar. Hence, the proposed method is able to capture the

minute motions of baby video and temporal filter guitar video.

Figure S 2: Noise Test and Sub-pixel Motion Test.(A) shows the variation across increase of noise value (sigma) in input

(noise test). (B) shows the effects of decrease in input motion (sub-pixel motion test). Magnification factor is changed

such that it produces the same amount of magnification. In both cases,average mean square error (MSE) is computed

across the predicted output and ground truth, over 25 different videos. Comparison is done with Anisotropy method,

Jerk-aware method, Acceleration method, Oh et al. method, the proposed base model M1 and lightweight model M2.
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Figure S 3: Effects of change in Magnification Factor on Acceleration based method [4], Jerk-Aware method [3],

Anisotropy method [6], Oh et al. [5], Ours Base model (M1), and Ours lightweight model (M2). The magnification

factor, has different meaning in each respective method [5]. The values of magnification factor is chosen such that, they

produce same amount of output motion with different input motion (the respective input motion values with output MSE

are shown in Figure S 2 (B) ). Average mean square error (MSE) is computed across the predicted output and ground

truth, over 25 different videos.

Figure S 4: Effects of change in Magnification Factor. Figure illustrates Acceleration method [4] output. Different

values of magnification factor in increasing order from (a) 20, (b) 40, (c) 60, (d) 100, and (e) 200 are used to generate

output shown in respective column. As, increase in magnification factor leads to more increase in distortions than small

increment in magnification, especially in dynamic scenarios.
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Figure S 5: Effects of change in Magnification Factor. Figure illustrates Anisotropy method [6] output. For columns,

(a) 50, (b) 100, (c) 200, (d) 500, and (e) 1000 , respective magnification factor values are used to generate magnified

output. As visible from the figure, with increase in magnification factor, their are minute changes in magnification while

increments in distortions (especially in dynamic scenarios).

Figure S 6: Effects of change in Magnification Factor. Figure illustrates Jerk-Aware method [3]. Different values of

magnification factor in increasing order from (a) 10, (b) 30, (c) 50, (d) 150, and (e) 400 are used to generate output

shown in respective column. As visible from the figure, with increase in magnification factor, their are minute changes in

magnification while increments in distortions (especially in dynamic scenarios).
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Figure S 7: Effects of change in Magnification Factor. Figure illustrates Phase based method [2] output. Different

values of magnification factor in increasing order from (a) 10, (b) 20, (c) 40, (d) 60, and (e) 100 for baby video and (a)

1, (b) 2, (c) 5, (d) 10, and (e) 100 for gun video are used to generate output shown in respective column (note:- for other

methods same values are used for both the videos). The linear methods, are not suitable for dynamic scenarios, as they

are unable to ignore dynamic motion. So, they produces large distortions in gun video (dynamic scenarios). Where as

in static scenario (baby videos), with increase in magnification factor their is increment in both, amount of magnification

and ringing artifacts (visible as lines overlapping the edges of motion objects) in static scenario.

Figure S 8: Effects of change in Magnification Factor. Figure illustrates Oh et al. method [5] output. Different values

of magnification factor in increasing order from (a) 10, (b) 20, (c) 50 (d) 100 and (e) 200 are used to generate output

shown in respective column. It produces more magnification, (both in static and dynamic scenarios), but it also produces

some unwanted motion (visible as large spikes in the temporal slice) and blurry distortions in the video. Distortions are

increased with inclemently in the magnification factor.
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Figure S 9: Effects of change in Magnification Factor. Figure illustrates ours Base model (M1) output. Different values

of magnification factor in increasing order from (a) 10, (b) 20, (c) 50 (d) 100 and (e) 200 are used to generate output

shown in respective column. M1 shows fewer distortions while increasing the amount of magnification as compare to

other SOTA methods, both in static and dynamic scenario.

Figure S 10: Effects of change in Magnification Factor. Figure illustrates ours lightweight model (M2) output. Different

values of magnification factor in increasing order from (a) 10, (b) 20, (c) 50 (d) 100 and (e) 200 are used to generate

output shown in respective column. M2 also shows good amount of magnification, but with increase in magnification

factor its performance degrades as compare to M1. This is expected as M2 has much fewer parameters than M1, so their

performance gap between become observable at extreme scenarios.
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Figure S 11: Mean Square Error (MSE) of Anisotropy method, Jerk-aware method, Acceleration method, Oh et al.

method, and the proposed methods on 25 synthetically generated videos containing different subtle motion of circles with

various backgrounds.

Figure S 12: Different backgrounds used for generation of different synthetic videos for quantitative analysis. Video 1-10

Figure S 13: Different backgrounds used for generation of different synthetic videos for quantitative analysis. Video

11-20.
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Figure S 14: Different backgrounds used for generation of different synthetic videos for quantitative analysis. Video

20-25.
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