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1. Overview
Here, we aim to provide additional details about the cer-

tain parts of main paper. First, we show architecture of
backbone network, where feature pyramid network struc-
ture (FPN) incorporated into SlowFast [2] network in fig-
ure Fig. 1. Second, we show the structure of TFA modules
used in our TAAD model in Sec. 2. Then, we present frame-
level Motion-mAP and MotionAP o n individual time scales
in Sec. 3 Finally, we show visual results of detected action-
tube instances under different motion types in Sec. 4.

2. Structure of Temporal Feature Aggregation
Modules

Listing 1, 2, and 3 contain the PyTorch implementation
of our MaxPool, TCN and ASPP TFA modules, used with
our Track Aware Action Detector (TAAD) method. Simi-
lar to 1D-ASPP module (see Listing-Fig. 3), In addition to
these blocks, we tried 1D-ConvNeXt [4] and 1D-Swin [5]
blocks as well, but observed that training was unstable and
that the final performance was worse. For example, 1D-
ConvNext could only reach up to 44% f-mAP compared to
53.3% using MaxPool module (Listing-Fig. 1). In all the
listings that follow, C is the number of channels and T is
the number of input frames.

3. Individual time scales results
Frame-level Motion-mAP and MotionAP on individual

time scales are shown in following tables:

(1) MotionAP on MultiSports in Tab. 1

(2) MotionAP on UCF24 in Tab. 2

(3) Motion-mAP on MultiSports in Tab. 4

(4) Motion-mAP on UCF24 in Tab. 3

The main take-away from these tables is that results are
consistent across different time scales compared to the av-
erage over all time scales. Through the MotionAP metric,

Table 1: MotionAP ablation on MultiSports [3]. We inves-
tigate the effect of different feature aggregation modules us-
ing frame MotionAP to asses the quality of motion-wise ac-
tion detection. Aggregating features across tracks, instead
of cuboids, improves action detection performance across
all categories, with a particularly noticeable improvement
for large motions.

f-mAP MotionAP
Method @0.5 Large Medium Small

Speed-IoU measured as mean over time scales [4,8,16,24,26]

Baseline 49.6 63.2 77.7 82.4
Baseline + track∗ 50.6 64.6 78.7 84.4
TAAD +MaxPool 53.9 70.2 83.4 86.1
TAAD +ASPP 54.4 71.1 83.4 86.9
TAAD +TCN 55.3 70.4 83.3 87.3

Speed-IoU measured at time scales of 16 frames

Baseline 49.6 62.7 78.8 81.8
Baseline + track∗ 50.6 64.2 79.8 83.7
TAAD +MaxPool 53.9 69.9 83.9 85.9
TAAD +ASPP 54.4 70.8 84.3 86.2
TAAD +TCN 55.3 70.0 84.5 86.4

Speed-IoU measured at time scales of 24 frame

Baseline 49.6 61.9 78.7 82.9
Baseline + track∗ 50.6 63.3 79.7 85.0
TAAD +MaxPool 53.9 68.6 83.9 87.3
TAAD +ASPP 54.4 69.6 83.5 88.3
TAAD +TCN 55.3 69.0 83.7 88.3

we show that that large-motion action instances are harder
to detect compared to medium motions, which in turn are
even harder to detect compared to small-motion action in-
stances, or in other words performance of large-motion <
medium-motion < small-motion. This result is consistent
across both our benchmarks, i.e. MultiSports and UCF24.
Such pattern is desirable and intuitive to understand, it is
missing in Motion-mAP because some class might not have
any (or very few) ground-truth instances in one or two
motion type categories resulting very small value of mAP



Figure 1: Single backbone with a single spatial upsample/downward step from res5 to res4. We add a single feature pyramid
network (FPN) block to increase the spatial resolution, because the average size (26 × 54) of bounding boxes is very small,
compared to the size (256× 256) of the input image fed to network, e.g. when using MultiSports data.

{
( t u b e t e m p o r a l p o o l ) : Adapt iveMaxPool1d ( o u t p u t s i z e =1)
}

Listing 1: MaxPool module with input feature of size T × C and output of 1× C.

Table 2: MotionAP ablation on UCF24 [6]. We investi-
gate the effect of different feature aggregation modules us-
ing frame MotionAP to asses the quality of motion-wise ac-
tion detection. Aggregating features across tracks, instead
of cuboids, improves action detection performance across
all categories, with a particularly noticeable improvement
for large motions.

f-mAP MotionAP
Method @0.5 Large Medium Small

Speed-IoU measured as mean over time scales [4,8,16,24,26]]

Baseline 75.9 78.8 86.5 88.5
Baseline + track∗ 78.3 81.4 87.8 88.4
TAAD +TCN 81.5 82.5 88.7 90.0

Speed-IoU measured at time scales of 16 frames

Baseline 75.9 79.0 86.7 88.2
Baseline + track∗ 78.3 81.4 88.3 87.8
TAAD +TCN 81.5 82.7 89.0 89.5

Speed-IoU measured at time scales of 24 frame

Baseline 75.9 79.0 86.3 88.7
Baseline + track∗ 78.3 80.9 87.9 88.6
TAAD +TCN 81.5 82.1 88.8 90.2

or zero mAP, since medium is middle motion category it
has more classes with some instances with medium motion

Table 3: Motion-mAP ablation on UCF24 [6]. We inves-
tigate the effect of different feature aggregation modules
using frame Motion-mAP to asses the quality of motion-
wise action detection. Aggregating features across tracks,
instead of cuboids, improves action detection performance
across all categories, with a particularly noticeable improve-
ment for large motions.

f-mAP Motion-mAP
Method @0.5 Large Medium Small

Speed-IoU measured as mean over time scales [4,8,16,24,26]

Baseline 75.9 67.0 77.3 70.6
Baseline + track∗ 78.3 68.6 79.0 72.1
TAAD +TCN 81.5 74.9 83.7 75.1

Speed-IoU measured at time scales of 16 frames

Baseline 75.9 68.9 78.6 72.1
Baseline + track∗ 78.3 70.6 80.0 73.5
TAAD +TCN 81.5 76.1 84.2 78.1

Speed-IoU measured at time scales of 24 frame

Baseline 75.9 67.4 78.3 72.1
Baseline + track∗ 78.3 68.4 79.7 74.7
TAAD +TCN 81.5 73.6 83.9 79.1

class, hence fewer classes with zero MotionAP resulting in
higher mean-AP i.e. Motion-mAP for medium motion type.



{
(TCN ) : Conv1d ( 5 7 6 , 576 , k e r n e l s i z e =3 ,

s t r i d e =1 , padd ing =2 , d i l a t i o n =2)
( t u b e t e m p o r a l p o o l ) : Adapt iveMaxPool1d ( o u t p u t s i z e =1)
}

Listing 2: TCN module with input feature of size T × C with output of 1× C.

Table 4: Motion-mAP ablation on MultiSports [3]. We in-
vestigate the effect of different feature aggregation modules
using frame Motion-mAP to asses the quality of motion-
wise action detection. Aggregating features across tracks,
instead of cuboids, improves action detection performance
across all categories, with a particularly noticeable improve-
ment for large motions. In “Baseline+track*”, the track
boxes are scored using baseline, with tracks acting as a
false-positive filtering mechanism.

f-mAP Motion-mAP
Method @0.5 Large Medium Small

Speed-IoU measured as mean over time scales [4,8,16,24,26]

Baseline 49.6 36.5 49.5 54.9
Baseline + track∗ 50.6 39.7 50.1 56.3
TAAD + MaxPool 53.9 43.8 52.7 57.7
TAAD + ASPP 54.4 44.2 52.9 58.4
TAAD + TCN 55.3 44.9 53.4 60.4

Speed-IoU measured at time scales of 16 frames

Baseline 49.6 36.4 51.7 52.8
Baseline + track∗ 50.6 39.5 52.5 55.3
TAAD +MaxPool 53.9 42.4 54.4 56.4
TAAD +ASPP 54.4 43.7 54.2 56.3
TAAD +TCN 55.3 43.2 55.6 58.9

Speed-IoU measured at time scales of 24 frame

Baseline 49.6 32.4 51.4 55.8
Baseline + track∗ 50.6 35.7 51.6 57.5
TAAD +MaxPool 53.9 38.4 54.2 58.7
TAAD +ASPP 54.4 39.0 53.9 59.2
TAAD +TCN 55.3 39.2 54.7 61.0

4. Motion-wise visual results
In this section we show visual results obtained using our

baseline and TAAD model. We discuss some interesting
observation in the caption of figures. The figures are best
viewed in colour. The qualitative results contain the follow-
ing scenarios:

(1) Large-motion due to fast execution of actions in Fig. 2.

(2) Large-motion due to fast camera motion in Fig. 3.

(3) Medium-motion action instances in Fig. 4.

(4) Small-motion action instance in Fig. 5.

(5) An action instance where TAAD fails due to tracking
error shown in Fig. 6.

In all the captions, “Overlap” denotes the spatiotemporal
overlap of the detected tube with the ground-truth tube, as
defined by Weinzaepfel et al. [7]. Ground-truth boxes and
frames (dot at the bottom of the frame) are shown in green
colour, while the detected track is shown in red colour. We
use “baseline+tracks” in these figure as “baseline” method.
Since all the methods use same set of tracks, red box is used
to annotate track boxes. Each method’s score has a separate
colour, described in the sub-caption.
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{
( ASPP ) : ASPP1D (

( convs ) : Modu leL i s t (
( 0 ) : Conv1d ( 5 7 6 , 256 , k e r n e l s i z e =1 ,

s t r i d e =1)
( 1 ) : S e q u e n t i a l (

( 0 ) : Conv1d ( 2 5 6 , 576 , k e r n e l s i z e =1 ,
s t r i d e =1)

( 1 ) : ReLU ( )
)
2 : ASPPConv1D (

( 0 ) : Conv1d ( 2 5 6 , 576 , k e r n e l s i z e =3 ,
s t r i d e =1 , padd ing =1)

( 1 ) : ReLU ( )
)
( 3 ) : ASPPConv1D (

( 0 ) : Conv1d ( 2 5 6 , 576 , k e r n e l s i z e =3 ,
s t r i d e =1 , padd ing =3 , d i l a t i o n =3)

( 1 ) : ReLU ( )
)
( 4 ) : ASPPConv1D (

( 0 ) : Conv1d ( 2 5 6 , 576 , k e r n e l s i z e =3 ,
s t r i d e =1 , padd ing = ( 5 ) , d i l a t i o n =5)

( 1 ) : ReLU ( )
)
( 5 ) : ASPPPooling1D (

( 0 ) : Adapt iveAvgPool1d ( o u t p u t s i z e =1)
( 1 ) : Conv1d ( 2 5 6 , 576 , k e r n e l s i z e =1 ,

s t r i d e =1)
2 : ReLU ( )

)
)
( p r o j e c t ) : S e q u e n t i a l (

( 0 ) : Conv1d ( 2 8 8 0 , 576 , k e r n e l s i z e =1 ,
s t r i d e =1 , b i a s = F a l s e )

( 1 ) : ReLU ( )
)

)

( t u b e t e m p o r a l p o o l ) : Adapt iveMaxPool1d ( o u t p u t s i z e =1)

}
Listing 3: 1D-ASPP [1] module with input feature of size T × C with output of 1× C.



(a) Basketball-drive: Large-motion: Speed 0.05 IoU; Overlap: Baseline 70%, ASPP 67%

(b) Volleyball-spike: Large-motion: Speed 0.05 IoU; Overlap: ASPP 73%,  TCN 72%

(d) Aerobic-pike-jump: Large-motion: Speed 0.17 IoU; Overlap: ASPP 71%,  TCN 67%

(c) Football-steal: Large-motion: Speed 0.03 IoU; Overlap: ASPP 77%,  TCN 77%

Figure 2: Large-motion due to fast action; (a) TCN fail to detect it and others fail to detect initial few frames. (b) Volley-spike
instance detected with high overlap both by ASPP and TCN. Similarly, baseline fails to detect fast action instances in (c) and
(d). (d) connect back to instances shown in Fig 2 (c) in the introduction Section of main paper.



(c) Football-aerial-duels: Large-motion: Speed 0.00 IoU; Overlap: ASPP 67%

(a) Volleyball-serve: Large-motion: Speed 0.17 IoU; Overlap: Baseline 79%, ASPP 79%, TCN 79 %

(b) Volleyball-defend: Large-motion: Speed  0.10 IoU; Overlap: Baseline 54%, ASPP 65%

(d) Basketball-3-point-shot: Large-motion: Speed 0.07 IoU; Overlap: ASPP 68%,  TCN 57 %

Figure 3: Large-motion due to camera motion; (a) shows an instance of “Volleyball-serve” which is correctly detected by all
three methods, it happens quite often. In contrast, ASPP is better at detection large motion instances as shown in (b), (c) and
(d).



(a) Volleyball-defend: Medium-motion: Speed 0.26 IoU; Overlap: Baseline 53%, TCN 63%

(b) Basketball-dribble: Medium-motion: Speed 0.29 IoU; Overlap: ASPP 90%

(d) Aerobic-straddle: Medium-motion: Speed 0.43 IoU; Overlap: ASPP  55%, TCN 63%

(c) Football-short-pass: Medium-motion: Speed 0.23 IoU; Overlap: ASPP  53%, TCN 58%

Figure 4: Medium-motion; all these instances show where temporal detection bounding is longer than ground truth tube,
which happen often for medium-motion instances. Accuracy of temporal boundary detection is directly proportional to
stability in continuous scores of consecutive boxes in a track, where ASPP seems to be better in these examples as a result
having higher overlap in (b) and (c).



(a) Volleyball-protect: Small-motion: Speed 0.91 IoU; Overlap: Baseline 62%

(c) Football-trap: Small-motion: Speed 0.59 IoU; Overlap: ASPP: 74%, TCN: 74%

(b) Basketball-pass: Small-motion: Speed 0.51 IoU; Overlap: Baseline 51%, ASPP: 61%

Figure 5: Small-motion; SubFig. (a) show instances where baseline is able to detect an instance of “Volleyball-protect”,
where others not, even though the confidence of the detection is very low for the baseline. (b) shows instances where TAAD
+TCN fails to detect it. (a) shows an action instance where baseline fails, although other methods are able to detect it with
high overlap but not in initial few frames.



(a) Aerobic-helicopter: Small-motion: Speed 0.52 IoU; Overlap: Baseline 51%

Figure 6: Tracking-error; This figures show that if tracking fails, e.g. in the first two frames of this action instance, TAAD
fails to detect such instances.


