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1. Implementation Details
1.1. Dataset

We focus on improving classification models based on
deep convolution neural networks (CNN) as most state-of-
the-art performance models fall in this regime. In our ex-
periments, we consider classification models trained on fol-
lowing datasets:

1. AFHQ [2]: Animal face high quality (AFHQ) dataset
is a high resolution dataset of animal faces with 16K
images from cat, dog and wild labels. In our experi-
ments, we consider a multi-class classifier over cat and
dog labels. We consider images with “wild” label as
near-OOD. The classifier is trained at an image resolu-
tion of 256× 256.

2. Dirty MNIST [8]: The dataset is a combination of orig-
inal MNIST [5] and simulated Ambiguous-MNIST
dataset. Each sample in Ambiguous-MNIST is con-
structed by decoding a linear combination of latent
representations of two different MNIST digits from
a pre-trained VAE [4]. The training dataset of the
classifier comprises of 60K clean-MNIST and 60K
Ambiguous-MNIST samples, with one-hot labels. In
our experiments, we consider classifier trained on
seven classes over digits ‘0’ - ‘6’. We consider images
from digits ‘7’ - ‘9’ as near-OOD samples. The origi-
nal dataset consists of grayscale images of size 28×28
pixels. We consider a classification model trained on
64×64 resolution.

3. Skin lesion (HAM10K) [9]: The HAM10000 is a
dataset of 100K dermatoscopic images of pigmented
skin lesions. It contains seven different lesion types

*Equal contribution

– Melanocytic Nevi (nv), Melanoma (mel), Benign
Keratosis (bkl), Actinic Keratoses and Intraepithelial
Carcinoma (akiec), Basal Cell Carcinoma (bcc), Der-
matofibroma (df), Vascular skin lesions (vasc). In our
experiments, we consider classifier trained to distin-
guish the majority class nv from mel and bkl. We con-
sider images from rest of the lesions as near-OOD. The
classifier is trained at an image resolution of 256×256.

4. CelebA [7] : Celeb Faces Attributes Dataset (CelebA)
is a large-scale face attributes dataset with more than
200K celebrity images, each with 40 binary attributes
annotations per image. In our experiments, we con-
sider a two-class classifier over attributes “Young” and
“Smiling” trained on CelebA dataset. Our AiD sam-
ples comprises of middle-aged people who are ar-
guably neither young nor old. To obtain such data, we
use aleatoric uncertainty estimates from MC-Dropout
averaged across 50 runs on test-set of CelebA. The
classifier is trained at an image resolution of 256×256.
We center-crop the images as a pre-processing step.

1.2. Classification Model

We used DenseNet architecture as the classification
model. In DenseNet, each layer implements a non-linear
transformation based on composite functions such as Batch
Normalization (BN), rectified linear unit (ReLU), pooling,
or convolution. The resulting feature map at each layer
is used as input for all the subsequent layers, leading to a
highly convoluted multi-level multi-layer non-linear convo-
lutional neural network. We aim to improve such a model in
a post-hoc manner without accessing the parameters learned
by any layer or knowing the architectural details. Our pro-
posed approach can be used for any DNN architecture.
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Figure 1. Examples of data augmentation using counterfactual explanations for different datasets.
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Figure 2. PCE: The encoder-decoder architecture to create counterfactual augmentation for a given query image. ACE: Given a query
image, the trained PCE generates a series of perturbations that gradually traverse the decision boundary of fθ from the original class to a
counter-factual class, while still remaining plausible and realistic-looking.

1.3. Progressive Counterfactual Explainer

We formulate the progressive counterfactual explainer
(PCE) as a composite of two functions, an image encoder
e(·) and a conditional decoder (g(·)) [1]. Our architec-
ture for the conditional decoder is adapted from Style-
GANv2 [1]. The image encoder converts the input image
x into l different latent codes (wl ∈ R512), for each of
the L layers of the decoder. The decoder further trans-
forms the layer-specific latent representation into a layer-
specific style-vector as sl = Al([wl, ϕ(c)]) where, Al is
an affine transformation and ϕ(c) is an embedding for c.
For training the StyleGANv2 decoder, we consider the de-
fault training parameters from [1]. For training the PCE,
we use a randomly sampled subset (∼ 50%) of the base-
line training data. Given an input image, the predicted class
k and a counterfactual class kc, we initialize the condition
c with all zeros and then set c[k] ∼ Uniform(0, 1) and
c[kc] = 1−c[k]. In all our experiments, we used λadv = 10,
λrec = 100 and λf = 10. Fig. 2 summarizes our architec-
ture.

For generating counterfactually augmented data, we first
consider a randomly selected subset of real training data as
Xr ∈ X . For each image in Xr, we generate four aug-
mented images by randomly selecting the c[k]. For each
augmented image, we used the condition used to generate
the image as the soft label while fine-tuning. Fig. 2 shows
an example of our data augmentation. We denote the pool of
the augmented images as Xc. In Fig. 1, we show examples
of counterfactual augmentation from different datasets.

For fine-tuning the given baseline with consider a combi-
nation of the original training dataset X and the augmented
data Xc. We randomly selected a subset of samples from
the two distributions and fine-tune the baseline for 5 to 10
epochs. We used the expected calibration error and the test-
set accuracy to choose the final checkpoint. Our model
does not require access to OOD or AiD dataset during fine-
tuning. During evaluation we compute predicted entropy
(PE) for original test-set and OOD samples and measure for

a range of thresholds how well the two are separated. We re-
port the AUC-ROC and the true negative rate (TNR) at 95%
true positive rate (TPR) (TNR@TPR95) in our results (see
Table 1 and 2). We will release the GitHub for the project
after the review process.

2. Toy-Setup: Two-Moons
In this section, we demonstrate our method on a toy

setup: the Two Moons dataset. We used the experimental
set-up from DDU [8] for this experiment. We use scikit-
learn’s datasets package to generate 2000 samples with a
noise rate of 0.1. For baseline classification model, we use a
2-layer dense-layer architecture, with ReLU activation and
batch normalization. The 2-D input data is projected to a
64-D latent space and then to 1D space to make final bi-
nary prediction. In Fig. 3.a, we show the uncertainty es-
timates (predicted entropy PE) from the baseline classifier.
The baseline classifier is uncertain only along the decision
boundary, and certain elsewhere (low PE).

Given the baseline classifier, we train a PCE to gener-
ate augmented data. We use an encoder with two fully-
connected layers that map 2-D input data to a 64-D latent
space. The condition is also projected to a 64-D space and is
concatenated to the output of the encoder. The decoder also
have two fully-connected layers that maps the concatenated
128-D latent vector back to a 2-D input space. In Fig. 3.c,
we show example of augmentation by counterfactual expla-
nation (ACE). Given a query point, we generate series of
augmented data by gradually changing the condition such
that the decision of the baseline is flipped. The color of the
dot represents the conditioned used to create the augmented
sample. Next, we fine-tune the classifier using the original
and the counterfactually augmented data. In Fig. 3.b, we
show the PE estimates from the fine-tuned classifier (base-
line + ACE). Fine-tuning with our augmented data widen
the decision boundary. Finally, we used the discriminator of
the PCE as a density estimator, to identify and reject OOD
data. The discriminator is trained on real/fake samples near
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Figure 3. Uncertainty results on Two Moons dataset. Yellow indicates low uncertainty, while blue indicates uncertainty. a) The baseline classifier is
uncertain only along the decision boundary, and certain elsewhere. b) Fine-tuning baseline model on ACE data improves uncertainty estimates near the
decision boundary. c) An example of augmented data and corresponding soft labels. d) The discriminator from PCE rejects OOD samples, hence the rejected
space have no uncertainty values (white color). e) The final uncertainty landscape, the improved classifier is certain on in in-distribution regions and rejects
OOD data.

the training distribution. Hence, we used a threshold of 0.5
on the discriminator to reject everything that is far from the
training distribution. In Fig. 3.d, the white color show the
input space that is rejected by the discriminator. In Fig. 3.e,
we show the final uncertainty landscape without overlaying
the training data. We improved the baseline model, to have
high certainty only in in-distribution regions. The uncer-
tainty increases as we go near the decision boundary. Thus
in addition to image classifiers, our strategy improves the
uncertainty estimates even for a classifier trained on a small
2D setup like Two Moons.

3. Additional Results
Much of the prior work has focused on obtaining un-

certainty estimates from a pre-trained DNN output using
threshold-based scoring functions. Liu et al [6] in their
paper show how energy functions can be used not only
as scoring functions but also as a trainable cost-function
to shape the energy surface explicitly for OOD-detection.
Hendrycks et al [3] propose the Outlier Exposure method
which regularizes the softmax outputs to be a uniform distri-
bution for outlier data. We compare these commonly-used
methods against our technique (ACE) and show the results
in Tables 1 and 2. Our method is consistent and competi-
tive, if not outperforming, across all datasets and AiD/OOD
categories.

4. Ablation Study
We conducted an ablation study over the three loss terms

of PCE in Eq. 5. The three terms of the loss function en-

forces three properties of counterfactual explanation, data
consistency: explanations should be realistic looking im-
ages, classifier consistency: explanations should produce
a desired outcome from the classifier and self consistency:
explanation image should retain the identity of the query
image. For ablation study we consider the cat and dog clas-
sifier. We train three PCE, in each run we ablate one term
from the final loss function. In Fig. 4, we show qualitative
example of the counterfactual data augmentation generated
through each PCE. Without data consistency, the images are
blur and are no longer realistic. Without classifier consis-
tency loss, though the images are realistic, but the output
of the classifier is not changing with the condition, hence
such PCE won’t generate augmented samples near the de-
cision boundary, which is the goal of our proposed strategy.
With self consistency, the generated images are not a grad-
ual transformation of a given query image.

Further, in Fig. 5 we present quantitatively compare the
uncertainty estimates from the baseline, before and after the
fine-tuning with ACE. In each row, we represent a different
ablation over the three loss terms. Fig. 5.A. shows the pre-
dicted entropy (PE) of in-distribution (iD) samples. Ide-
ally, fine-tuning should minimally effect the PE distribution
over iD samples. Without classification consistency loss
(second row), the PE distribution of iD samples changed
significantly. Fig. 5.B and Fig. 5.C shows the PE distri-
bution over ambiguous in-distribution (AiD) samples and
near-OOD samples, respectively. The data augmentation
derived from PCE without adversarial loss or reconstruction
loss, is not able to separate AiD samples or near-OOD from
rest of the test set. In Fig. 5.D, we use the discriminator of



Table 1. Additional results on identifying ambiguous in-distribution (AiD) samples. For all metrics, higher is better.

Train Method/ Test-Set Identifying AiD
Dataset Model Accuracy AUC-ROC TNR@TPR95

Baseline+energy [6] 99.44±0.02 0.87±0.06 49.00±1.64
AFHQ Energy w/ fine-tune [6] 99.45±0.11 0.69±1.28 30.36±2.52

Outlier Exposure [3] 99.50±0.14 0.85±0.01 41.07±0.75
Baseline+ACE 99.52±0.21 0.91±0.02 50.75±3.9

Baseline+energy [6] 95.68±0.02 0.80±0.03 17.60±0.55
Dirty Energy w/ fine-tune [6] 96.17±0.02 0.39±0.04 11.59±0.25

MNIST Outlier Exposure [3] 96.30±0.07 0.63±0.07 17.6±2.88
Baseline+ACE 95.36±0.45 0.86±0.01 34.12±2.60

Baseline+energy [6] 89.36±0.96 0.57±0.28 4.87±0.32
CelebA Energy w/ fine-tune [6] 90.22±0.96 0.53±1.25 5.06±0.28

Outlier Exposure [3] 86.65±1.22 0.53±0.46 5.06±0.19
Baseline+ACE 86.80±0.79 0.74±0.06 22.36±2.30

Baseline+energy [6] 85.88±0.75 0.77±0.12 18.40±0.51
Skin-Lesion Energy w/ fine-tune [6] 86.56±0.53 0.64±0.06 17.45±1.78
(HAM10K) Outlier Exposure [3] 86.37±0.46 0.73±0.02 13.21±2.70

Baseline + ACE 81.21±1.12 0.84±0.05 71.60±3.80

Table 2. OOD detection performance for different scoring-based methods.

Train Method Near-OOD (Wild) Far-OOD (CIFAR10) Far-OOD (CelebA)
Dataset AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Baseline+energy [6] 0.88±0.03 47.77±1.10 0.94±0.05 72.68±2.69 0.96±0.04 74.75±2.89
AFHQ Energy w/ fine-tune [6] 0.93±3.06 45.97±2.78 0.99±0.00 0.66±0.01 0.94±1.86 68.38±3.03

Outlier Exposure [3] 0.92±0.01 73.99±2.62 0.99±0.20 99.54±0.79 0.96±0.01 78.69±3.02
Baseline+ACE 0.89±0.03 51.39±4.40 0.98±0.02 88.71±5.70 0.97±0.03 88.87±9.80

Baseline+energy [6] 0.87±0.04 40.30±1.05 0.86±0.12 43.92±2.30 0.91±0.02 62.10±5.17
Dirty Energy w/ fine-tune [6] 0.60±0.08 37.43±0.93 1.00±0.00 99.99±0.00 1.00±0.00 99.06±0.01

MNIST Outlier Exposure [3] 0.94±0.01 65.58±1.64 1.00±0.00 99.99±0.00 1.00±0.00 99.56±0.12
Baseline+ACE 0.94±0.02 37.23±1.90 0.98±0.02 67.88±3.10 0.97±0.02 70.71±1.10

Baseline+energy [6] 0.76±0.51 9.40±0.01 0.94±0.08 32.08±1.70 0.85±0.76 17.10±0.72
CelebA Energy w/ fine-tune [6] 0.85±1.27 32.81±1.92 0.99±0.00 99.99±0.00 0.91±0.77 84.35±1.29

Outlier Exposure [3] 0.66±0.69 8.44±0.45 0.75±0.70 26.09±0.51 0.69±0.53 16.63±0.90
Baseline+ACE 0.87±0.03 34.37±2.50 0.96±0.01 96.35±2.50 0.92±0.05 63.51±1.50

Baseline+energy [6] 0.70±0.04 10.85±0.08 0.70±0.14 7.90±0.29 0.65±0.20 2.83±1.33
Skin-Lesion Energy w/ fine-tune [6] 0.62±0.02 9.80±1.81 1.00±0.00 99.77±0.33 0.76±0.13 16.04±1.08
(HAM10K) Outlier Exposure [3] 0.67±0.09 10.38±3.30 0.99±0.00 97.17±2.37 0.81±0.08 22.64±4.30

Baseline+ACE 0.72±0.04 10.99±2.80 0.97±0.02 66.77±1.40 0.96±0.03 95.83±5.00

the PCE to identify far-OOD samples. In all three rows,
we observe sub-optimal performance of the discriminator
in identifying and rejecting far-OOD samples. The legend
shows the AUC-ROC for binary classification over uncer-
tain samples and iD samples. Hence, all three loss terms
are important to improve the uncertainty estimates of the
baseline over all samples across the uncertainty spectrum.

5. Robust Generalization

In this experiment, we establish a connection between
loss landscape plots and generalization of classifiers. In or-
der to qualitatively understand the improved generalization
of our method, we try to visualize the high-dimensional loss
landscape via 3D weight visualization plots as shown by Li

et al. We compute the cross-entropy loss using test set of
CelebA and AFHQ and follow the method given by Li et
al. to compare the loss landscape geometry for the baseline
model and our method (ACE).

We observe that our method leads to smooth and flatter
loss landscapes as compared to baseline. This shows that
slight perturbation to the weight does not change the loss
much, which may qualitatively explain why we obtain bet-
ter generalization performance and robustness to adversarial
attacks in our experiments. We do not thoroughly investi-
gate this direction and leave it as an important direction for
future research.
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Figure 4. Examples of data augmentation while ablating different loss terms.
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Figure 5. Comparison of the uncertainty estimates from the baseline, before and after the fine-tuning with ACE. Each row represents
a different ablation over the three loss terms. A) Predicted entropy (PE) of in-distribution (iD) samples. Ideally, fine-tuning should
minimally effect the PE distribution over iD samples. Without classification consistency loss (second row), the PE distribution of iD
samples changed significantly. B) PE distribution over ambiguous in-distribution (AiD) samples. C) PE distribution over near-OOD
samples. The data augmentation derived from PCE without adversarial loss or reconstruction loss, is not able to separate AiD samples or
near-OOD from rest of the test set. D) We use the discriminator of the PCE to identify far-OOD samples. In all three rows, we observe
sub-optimal performance of the discriminator in identifying and rejecting far-OOD samples. The legend shows the AUC-ROC for binary
classification over uncertain samples and iD samples. Hence, all three loss terms are important to improve the uncertainty estimates of the
baseline over all samples across the uncertainty spectrum.



Figure 6. Weight loss landscape visualizations for baseline model and our
method on CelebA and AFHQ datsets
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