A. Task Description

Task Description # Train  # Test
Images Images
Object Detection
Sim10k — Cityscapes 10000 25000
Cityscapes — Foggy 20000 5000
Cityscapes — KITTI 25000 7481
Cityscapes — BDD100k | 25000 10000
MS-COCO 4 — 1 94400 23600
MS-COCO9 — 1 106200 11800
Image Segmentation
GTA — Cityscapes 25000 2975
Synthia — Cityscapes 9400 2975

Table 1: Description of the tasks, number of train images
and number of test images required to train the vanilla un-
supervised domain adaptation algorithms, which require ac-
cess to the test-images at training time [43, 4]

The number of training and testing images for each
dataset split is available in Table 1. The number of test-
ing images describes the number of unlabeled images that
are available at training time for the baselines “Chen et al.”
[4] and “Saito et al.” [43] for the vanilla unsupervised ob-
ject detection results, since both methods assume access to
the test distribution at training time.

B. Further Experiments

Task | TTT Tent Ours
Sim10k — Cityscapes 132 156 89
Cityscapes — Foggy Cityscapes | 10.4 113 9.0
Cityscapes — KITTI 105 11.8 85
Cityscapes — BDD100k 96 102 83

Table 2: Detection-Expected Calibration Error (d-ECE)
of the models on the test set. Lower d-ECE is better. All
models are trained on the novel distributions with a budget
(n) = 64. We see that using TeST, we not only improve the
accuracy performance of the models, but also are able to
improve the calibration of the models predictions.

Calibration of Predictions One metric that is often over-
looked when deploying predictive models is that of calibra-
tion: are the probability scores calibrated to their perfor-
mance. Similar to accuracy, we also analyse the effect of
test-time adaptation on the calibration of the resultant mod-
els. We use the recent Detection-Expected Calibration Er-

ror (D-ECE) metric to measure the calibration of the pre-
dictions [26]. To test this, we experiment with the same
self-drivimg domain adaptation benchmarks we used for the
object detection using a base Faster-RCNN detector. The
results are presented in Table 2. Interestingly, we see that
using pseudo-labels from the teacher, we are able to out-
perform both TTT and Tent by being better calibrated. By
performing entropy minimization and knowledge distilla-
tion on the student, we are able to get better performance,
and model predictions that are better calibrated.

C. Qualitative Results

Along with the quantitative results, we perform a thor-
ough qualitative evaluation of TeST. We first further inves-
tigation the effect of adding TeST by investigating the true-
postives and false-positive outputs from the object detec-
tors. Figures 9 and 10 show results for a base Faster RCNN
object detector [38] on the BDD100k [66] and MS-COCO
[3 1] datasets, respectively before and after TeST. Figures 1 1
and 12 show results for a base Deformable Detection Trans-
former object detector [70] on the BDD100k [66] and MS-
COCO [31] datasets, respectively, before and after TeST.
All the images are randomly sampled, and we do not per-
form any cherry-picking to get better qualitative results.
We see that in each of the examples, by adding TeST, we
are able to increase the number of true positives, while de-
creasing the number of false positives, both of which are
important qualities of a good object detector. By perform-
ing qualitative examples on a driving dataset (BDD-100k)
and a common objects datset (MS-COCO), we are able to
evaluate the qualitative improvements on both fronts.

Furthermore, we also investigate the representations
learned by TeST by looking at the 3-nearest neighbours in
the test set for a given query image. Figure 13 and 14 show
the 3-nearest neighbour results for the MS-COCO dataset
for a Faster RCNN [38] and a Deformable DeTR [70], re-
spectively. The query and neighbour images are from the
test-set. We see that using TeST, the model consistently
learns semantically relevant features, as the nearest neigh-
bours are from the same class as the objects in the query
image.



Figure 9: Qualitative results from BDD100k with a Faster RCNN Object Detector [38]. True positives are shown in green
rectangles and False positives are shown in red rectangles. We note that: all images are chosen at random without any
cherry-picking. We see that the models trained with TeST have fewer false-positives and more true-positives, which strongly
suggests that TeST is able to improve the final object detector on the novel dataset.



Source Model TeST

Figure 10: Qualitative results from MS-COCO with a Faster RCNN Object Detector [38]. True positives are shown in green
rectangles and False positives are shown in red rectangles. We note that: all images are chosen at random without any
cherry-picking. We see that the models trained with TeST have fewer false-positives and more true-positives, which strongly
suggests that TeST is able to improve the final object detector on the novel dataset.
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Figure 11: Qualitative results from BDD100k with a Deformable DeTR Object Detector [70]. True positives are shown in
green rectangles and False positives are shown in red rectangles. We note that: all images are chosen at random without
any cherry-picking. We see that the models trained with TeST have fewer false-positives and more true-positives, which
strongly suggests that TeST is able to improve the final object detector on the novel dataset. We see that the models trained
with TeST have fewer false-positives and more true-positives, which strongly suggests that TeST is able to improve the final
object detector on the novel dataset.



Source Model TeST

Figure 12: Qualitative results from MS-COCO with a Deformable DeTR Object Detector [70]. True positives are shown in
green rectangles and False positives are shown in red rectangles. We note that: all images are chosen at random without
any cherry-picking. We see that the models trained with TeST have fewer false-positives and more true-positives, which
strongly suggests that TeST is able to improve the final object detector on the novel dataset.



Query Image 3-Nearest Neighbours

Figure 13: 3-Nearest Neighbours in the embedding space for the feature extractor of a Faster-RCNN detector [38], after
it has been trained using TeST on the COCO dataset. We see that the model is able to learn semantically meaningful
representations and the nearest neighbours to the query image are semantically similar, thereby showing that TeST is able to
perform meaningful reprensentation learning.



Query Image 3-Nearest Neighbours

Figure 14: 3-Nearest Neighbours in the embedding space for the feature extractor of a Deformable DeTR detector [70],
after it has been trained using TeST on the COCO dataset. We see that the model is able to learn semantically meaningful
representations and the nearest neighbours to the query image are semantically similar, thereby showing that TeST is able to
perform meaningful reprensentation learning.



