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1. Additional Training Information

1.1. Self-Supervised Pretraining

For CIFAR-10, CIFAR100 and Animal10N we use Sim-
CLR [1] for self-supervised pre-training. Pretraining is
done for 1000 epochs, with the learning rate starting at 0.5,
and decaying by a factor of 0.1 after 700, 800 and 900
epochs. We use stochastic gradient descent as our opti-
mizer, with Nesterov momentum of 0.9 and weight decay
of 1× 10−4. We use a temperature of 0.5 for SimCLR and
a batch size of 512.

For Webvision, we adopt MoCo-v2 [2], trained for 100
epochs (with 1 epoch of warmup) and with a batch size of
128. We use stochastic gradient descent as our optimizer,
with momentum of 0.9 and weight decay of 1× 10−4. The
learning rate starts at 0.015, decaying by a factor of 0.1 at
epoch 50.

The feature embeddings generated by our models have
512 dimensions.

1.2. Bootstrapping Training

For CIFAR10, CIFAR100 and Animal10N, we do 60
epochs of bootstrapping training with MixUp. We use a
learning rate of 0.02, which decays to 0.002 after 5 epochs
and to 0.0002 after 50 epochs. Stochastic gradient descent
is used as the optimizer, with Nesterov momentum of 0.9
and weight decay of 5× 10−4.

For Webvision, we do 300 epochs of bootstrapping train-
ing with MixUp. We use a starting learning rate of 0.005,
which increases linearly for the first 30 epochs until it
reaches 0.1, and then follows a cosine learning rate decay
(capped at a minimum of 1 × 10−5). Stochastic gradient
descent is used as the optimizer, with Nesterov momentum
of 0.9 and weight decay of 1× 10−5.

In all cases, we use a batch size of 64 and a MixUp alpha
of 0.2.

1.3. Semi-Supervised Learning

For semi-supervised learning, we use FixMatch for all
our experiments, with the temperature set at 0.5, the confi-
dence threshold for pseudo-label generation set at 0.95, and
the unlabelled loss ratio set at 1.0. We train for 100,000 it-
erations in all cases, and use an exponential moving average
momentum of 0.999.

We use a cosine learning rate, starting at 0.02 (capped at
a minimum of 1× 10−5 for Webvision, and at 1× 10−4 for
all other experiments). We use stochastic gradient descent
with nesterov momentum of 0.9, and weight decay of 1 ×
10−5 for Webvision and 5×10−4 for all other experiments.

For CIFAR10, CIFAR100 and Animal10N, we use a
batch size of 64 clean samples, and 3 × 64 noisy samples
per batch. For Webvision, we use a batch size of 32 clean
samples, and 3× 32 noisy samples per batch.

1.4. Final Model Training

For final model training, we do 300 epochs of training
for all experiments.

We use a cosine learning rate, starting at 0.02 (capped at
a minimum of 1× 10−5 for Webvision, and at 1× 10−4 for
all other experiments). We use stochastic gradient descent
with nesterov momentum of 0.9, and weight decay of 1 ×
10−5 for Webvision and 5×10−4 for all other experiments.

We use a batch size of 64 for Webvision and 128 for all
other experiments,

1.5. Creating the Clean, Noisy and Final Datasets

For all of our experiments, we generate predictions for
samples by averaging over 25 weak augmentations of each
sample, and use the 90% most confident predictions to esti-
mate the noise transition matrix for the dataset.

For CIFAR10 and Animal10N, we set K = 0.1 and τ =
0.99. For CIFAR100 and Webvision, we set K = 0.25 and
τ = 0.99.
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1.6. Model Architecture

In the modified networks that we used to learn the rela-
tionship between images, noisy labels and true labels, we
project both the images and noisy labels to have an encod-
ing size of 128 before concatenating them together, with our
hidden layer also having a size of 128. We use a dropout
layer with p = 0.2 after each of these linear projections
(except the final classifier head), and we use batch normal-
ization before the final classifier head.

2. Effect of Null Label Type

In our method, we describe the use of a ‘null’ label to
represent the case where no noisy label is present. For all
of our experiments, if there are k classes in the training set,
we use a k-wide zero vector as our ‘null’ label. Here, we
experiment with two alternative choices:

• One Vectors: Using a k-wide vector filled with ones;

• 1
k Vectors: Using a k-wide vector where every value
equals 1

k (so that the sum of all values is 1).

We show the results of using these alternative ‘null’ label
representations in Table 1.

Null Label Type Accuracy

Zero Vectors 95.70
One Vectors 95.82
1
k Vectors 95.50

Table 1. Accuracy using different null label methods for Asym.
40% noise on CIFAR10

In our experiments, we find that the choice of null label
representation has little impact on the final performance of
the model. In all cases, the model is able to learn to make
predictions when a noisy label is and is not present.

3. Ablation of Model Construction

For all of our results, we use a ‘concatenation’ based
model architecture, where image features and noisy labels
are combined by projecting them to the same dimension-
ality, and then concatenating them together before passing
them through the remaining linear, ReLU and batch normal-
isation layers of the network. This form of combining noisy
labels and image features together with concatenation is the
standard method used by contemporary works [3, 4, 6].

Here, we briefly explore two other potential architectures
for combining image features and noisy label information
together.

• Mixture of Experts: A separate classification head is
created for every noisy label class, with the noisy la-
bel controlling which noisy label head is used for the
prediction. In the case of mixed noisy labels (such as
when performing MixUp between two noisy labels of
different classes), the model output is the linear com-
bination of each of the classification heads, weighted
by their corresponding value in the noisy label;

• Attention: Scaled dot-product attention, as described
by Vaswani et al. [5], is used to allow different noisy
labels to attend to different image features. For our
experiments on CIFAR10, we generate a query by pro-
jecting the noisy label to a 1×16 tensor, generate keys
by projecting image features to a 128× 16 tensor (rep-
resenting a set of 128 keys), and generate values by
projecting image features to a 128 × 16 tensor (repre-
senting a set of 128 values). Scaled dot-product atten-
tion is then used to compute a 1 × 16 feature tensor,
with a final linear layer acting as a classification head.

In Table 2, we show the results obtained by our training
method using all three of these model architectures on 40%
Asymmetric noise on CIFAR10. We see that the concatena-
tion and mixture of experts models perform similarly well,
with the attention based model performing ∼ 1.5% worse.

Model Type Accuracy

Concatenation 95.65
Mixture of Experts 95.53

Attention 94.02

Table 2. Accuracy using different model constructions for Asym.
40% noise on CIFAR10

We note however that our exploration into using these
model types is limited, and there may be opportunities to
further optimise for these architectures.

4. Effect of Dropping Labels for Pseudo-Label
Generation

In Section 3.2, we discuss how label-dropping is used
during semi-supervised learning to allow our model to make
predictions with and without noisy labels present. However,
we do not use label dropping for the weakly augmented
samples used for pseudo-label generation, with the justifi-
cation that the model loss is not backpropagated through
the weakly augmented samples in the FixMatch algorithm,
and that always using noisy labels improves pseudo-label
accuracy. Here, we experimentally justify this decision by
comparing the final model accuracy when label dropping is
and is not used for weakly augmented samples during semi-
supervised learning.
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- Accuracy

With Label Dropping 95.33
Without Label Dropping 95.74

Table 3. Effect of Label Dropping on Final Accuracy for Asym.
40% noise on CIFAR10

Here, we see that using label dropping for weakly aug-
mented samples decreases the accuracy of the model. Thus,
we always use noisy labels for pseudo-label generation.

5. Generating Plausible Noisy Labels for Test-
ing Samples

In our experiments, we explore using ‘null’ labels in
place of a noisy label for samples at testing time. How-
ever, rather than passing a null label into the model along-
side the testing sample, we could attempt to generate plau-
sible ‘noisy’ labels from testing samples.

In this experiment, we attempt to generate plausible
noisy labels from samples using the model as it was at the
end of the bootstrapping phase. For a given testing sample,
we use the bootstrapping model to generate the ‘noisy’ la-
bel, then we pass the testing sample and the ‘noisy’ label
into the final trained model to generate the final prediction.

- Accuracy

With Null Labels 95.74
With Label Generation 95.09

Table 4. Comparison of Null Labels and Label Generation on Final
Accuracy for Asym. 40% noise on CIFAR10

Here, we see that attempting to generate plausible noisy
labels is a less effective strategy that using null labels to
represent samples without associated noisy labels.

6. 70% PMD Noise on CIFAR10 and CI-
FAR100

In this section, we investigate the results of our method
on 70% PMD noise for CIFAR10 and CIFAR100. In Table
5, we show the accuracy of our method on these datasets.
We see that on CIFAR100 we get SOTA results, greatly sur-
passing the existing PLC method. However, on CIFAR10,
we perform poorly.

To understand this, in Figures 1 and 2 we show the
noise transition matrix and the final confusion matrix of our
model for 35% and 70% PMD-1 noise for CIFAR10 and
CIFAR100.

In Figure 1(c), we see the noise transition matrix for
PMD-1-0.70 Noise on CIFAR10, and we note that by in-

(a) PMD-1-0.35
Noise Transition Matrix

(b) PMD-1-0.35
Final Confusion Matrix

(c) PMD-1-0.70
Noise Transition Matrix

(d) PMD-1-0.70
Final Confusion Matrix

Figure 1. Noise Transition and Confusion Matrices for PMD-1
Noise on CIFAR10

(a) PMD-1-0.35
Noise Transition Matrix

(b) PMD-1-0.35
Final Confusion Matrix

(c) PMD-1-0.70
Noise Transition Matrix

(d) PMD-1-0.70
Final Confusion Matrix

Figure 2. Noise Transition and Confusion Matrices for PMD-1
Noise on CIFAR100

troducing 70% noise in a non-symmetric way, several of
the classes have ‘flipped’. For example, more cats have be-
come labelled as dogs than are labelled as cats, and vice
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Dataset CIFAR-10 CIFAR-100

Noise Type Type-I 70% Type-II 70% Type-III 70% Type-I 70% Type-II - 70% Type-III - 70%

Cross-Entropy 41.98 45.57 43.42 39.32 39.30 40.01
PLC [8] 42.74 46.04 45.05 45.92 45.03 44.52

Ours (Regular Model) 21.02 27.55 21.27 58.15 53.77 57.81
+ Test-Time Aug. 21.17 27.38 20.99 59.27 54.44 58.77

Ours (Modified Model) 19.18 27.28 19.94 58.69 58.03 57.90
+ Test-Time Aug. 19.71 27.17 20.21 59.39 58.95 58.95

Table 5. Test accuracy (%) for Polynomial Margin Diminishing Noise [7]. Top methods are in bold.

versa (classes 3 and 5). Trucks and airplanes have simi-
larly become flipped. Because of this, our method attempts
to ‘correct’ samples to the wrong class, which we show in
Figure 1(d).

If we measure the performance of our model with re-
spect to the flipped classes (by associating each label with
the modal class it represents in the noise transition matrix),
we find that our model has an accuracy of 45.7%, slightly
surpassing the accuracy of PLC.

On CIFAR100, this form of class flipping happens much
more rarely due to the 70% of mislabelled samples being
‘spread out’ among over more classes. Because of this,
our method is able to achieve much higher accuracy on CI-
FAR100 than it does in CIFAR10. In Figure 2(d), we show
that the final confusion matrix for our trained model on CI-
FAR100 PMD-1-0.70 noise is much cleaner than it is for
CIFAR10 PMD-1-0.70 noise (shown in Figure 1(d)).

4



References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020.

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

[3] Keren Gu, Xander Masotto, Vandana Bachani, Balaji Laksh-
minarayanan, Jack Nikodem, and Dong Yin. An instance-
dependent simulation framework for learning with label noise,
2021.

[4] Naoto Inoue, Edgar Simo-Serra, Toshihiko Yamasaki, and Hi-
roshi Ishikawa. Multi-label fashion image classification with
minimal human supervision. In Proceedings of the IEEE In-
ternational Conference on Computer Vision Workshops, pages
2261–2267, 2017.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[6] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhi-
nav Gupta, and Serge Belongie. Learning from noisy large-
scale datasets with minimal supervision. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, pages 839–847, 2017.

[7] Le Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev
Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C
Alexander. Learning to segment when experts disagree. In
International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 179–190. Springer,
2020.

[8] Yikai Zhang, Songzhu Zheng, Pengxiang Wu, Mayank
Goswami, and Chao Chen. Learning with feature-dependent
label noise: A progressive approach. In International Confer-
ence on Learning Representations, 2021.

5


