
A. Additional Experimental Results
A.1. Variants of Weight with Hard Instance Selection

In Eq. (5) we propose a soft weight. Alternatively, we consider a hard weight, where top-k instances receive entire weight
while weights for the rest of instances are set to 0. Specifically, let I =argsort

h
Ej 6=i

�
minn kzim � zj

n
k
 i

, a sorted list in
descending order. Let Ik is a set of indices including the first k items of the list I . The hard weight is defined as:

↵
i

m
=

1

k
1{m2 Ik} (8)

We present results in Figure 7b. Overall we observe a similar trend with the soft weight in Figure 7a. For example, both ⌧

and k work robustly when their values are small for texture categories. For object categories we generally require a bit larger
⌧ or k to obtain an optimal performance, as defective regions could be sometimes larger and even global. Between hard and
soft weights, we find that soft weights are slightly better as it still assigns different weights to instances while hard weight
assigns uniform weights to top-k instances. One could develop to take the best of both worlds as follows:

↵
i

m
/ exp

⇣1
⌧
Ej 6=i

�
min
n

kzi
m
� zj

n
k
 ⌘

, m2 Ik or 0 otherwise. (9)

A.2. Analysis on Labeled Normal Data Size
In this section we study the impact of the number of labeled normal data on the clustering performance of semi-supervised

weighted average distance. Specifically, we vary the number of labeled normal data used to compute the weight of Eq. (6).
The summary results are in Figure 8. We also plot the performance of unsupervised version of Eq. (5). For object and

MTD we find a clear trend of performance improvement as we increase the number of labeled normal data, while for texture
the performance does not change much. Since acquiring labeled normal data is a lot cheaper than acquiring labeled anomaly
data of multiple types, our results suggest a relatively inexpensive way to improve the clustering performance with a minimal
supervision. For example, 20% of labeled normal data for object categories of MVTec dataset corresponds to around 50
images.

A.3. Patch vs Holistic Representation
We provide results comparing the clustering performance of holistic and patch-based representations using ResNet [24, 69]

and EfficientNet [58] models. Specifically, we conduct experiments using ResNet with various depths (18, 50, 101, 152)
and EfficientNet with various sizes (B0, B4, B7). Summary results are in Figure 9. For all accumulated bar plots over three
datasets, we observe consistent trend of improved anomaly clustering performance using patch-based representations (second,
third and fourth columns, with maximum Hausdorff, weighted average and semi-supervised version of that, respectively) over
a holistic representation (first column).

A.4. Feature Extractor
We study the performance of anomaly clustering for various feature extractors, including ResNet [24, 69], Efficient-

Net [58], and Vision Transformer (ViT) [16]. All aforementioned models are trained on ImageNet [14]. We provide which
layer and average pooling kernel size have been used for each network in Table 6.

Table 6: Implementation details on the layer and average pooling kernel size used for each network architecture.

Network ResNet EfficientNet ViT-T ViT-S ViT-B ViT-L

Layer used ResBlock 2 Reduction 3 Block 7 Block 13
Kernel size 3⇥3 1⇥1

The results are in Figure 10 and 11. We plot accumulated NMI scores of average distance (i.e., ↵= 1
M

), maximum
Hausdorff, and weighted distance without and with labeled normal data. It is clear that the proposed multiple instance
clustering framework outperforms a single instance clustering via average distance. We observe weighted average improves
upon maximum Hausdorff for many cases. Moreover, semi-supervised version of weighted average distance significantly
improves the performance.



(a) NMI-vs-⌧ (b) NMI-vs-k

Figure 7: Sensitivity analysis of ⌧ and k on MVTec dataset.

Figure 8: NMI scores of semi-supervised anomaly clustering with varying ratios of labeled normal data. Plots with dotted
line represent unsupervised anomaly clustering results with the proposed weighted distance.

Figure 9: Bar plots with NMI scores over three datasets using various ResNet and EfficientNet models with last hidden
layer. We show results for holistic and patch-based with maximum Hausdorff distance, weighted average distance, and its
semi-supervised version.



Figure 10: Bar plots with NMI scores over three datasets using various ResNet models with their intermediate layers as in
Table 6. We show results for average, maximum Hausdorff distance, weighted average distance, and its semi-supervised
version.

Figure 11: Bar plots with NMI scores over three datasets using various EfficientNet and ViT models with their intermediate
layers as in Table 6. We show results for average, maximum Hausdorff distance, weighted average distance, and its semi-
supervised version.

A.5. Results on Purity with Overclustering
We provide additional results on the purity of clusters with overclustering in Figure 13 on MVTec dataset. We also present

the area under the curve divided by the total number of examples (mAUC) in the bracket of each legend. As we see in
Figure 13, we observe significantly higher purity with our proposed clustering framework (brown, green, light blue) over the
baseline (pink) for most cases.

B. Additional Analysis with Variants of Distance Measure
We provide additional qualitative reasons on why max or min operators perform less robust than E when computing

unsupervised weights of Eq. (5). Firstly, the downside of min operator is clear from the formulation. To be clear, we write
the formulation as follows:

↵
i

m
/ exp

⇣1
⌧
min
j 6=i

�
min
n

kzi
m
� zj

n
k
 ⌘

(10)

Let an image xi is a duplicate of xj , i.e., xi =xj . Then, for any zi
m

, we can always find zj
n

whose distance is 0. In other
words, minn kzim � zj

n
k=0 for all m, and we get an uniform weight ↵i

m
/ exp(0). This is problematic if xi is indeed an



anomalous image as ↵ does not provide any meaningful signal to attend to the defective area.
Secondly, as in Figure 12, the max operator would highlight the blue cable as it does not exists for some images in the

dataset, even though it is a normal pattern.

xi xjxi (weight)

Figure 12: An input image xi and that with weight overlaid when computed via max operators against xj’s on the right.

C. Formulations for Variant of Hausdorff Distance
In this section we provide exact formulations that we use for experiments in Section 5.3.

1. Eq. (3): mean mean, Eq. (2): – :

davgavg(Zi, Zj) =
1

MN

X

m=1,...,M

X

n=1,...,M

�
kzi

m
� zj

n
k
 

2. Eq. (3): max min, Eq. (2): max :

dmaxH(Zi, Zj) = max
�
d(Zi, Zj), d(Zj , Zi)

 
,

d(Zi, Zj) = max
m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 

3. Eq. (3): max min, Eq. (2): mean :

dmaxH�avg(Zi, Zj) =
1

2

�
d(Zi, Zj) + d(Zj , Zi)

�
,

d(Zi, Zj) = max
m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 

4. Eq. (3): min min, Eq. (2): – :

dminmin(Zi, Zj) = min
m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 

5. Eq. (3): mean min, Eq. (2): max :

davgmin(Zi, Zj) = max
�
d(Zi, Zj), d(Zj , Zi)

 
,

d(Zi, Zj) =
1

M

X

m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 

6. Eq. (3): mean min, Eq. (2): mean :

davgmin(Zi, Zj) =
1

2

�
d(Zi, Zj) + d(Zj , Zi)

�
,

d(Zi, Zj) =
1

M

X

m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 



Table 7: Normalized mutual information (NMI), adjusted rand index (ARI) and F1 scores of unsupervised and semi-
supervised clustering methods on MVTec (object, texture) and MTD datasets. Hierarchical Ward clustering is used for
clustering, while various distance measures, such as average, maximum Hausdorff, or the proposed weighted average, are
used to compute pairwise distances between data. We also report the performance of weighted average distance whose
weights are generated from the ground-truth segmentation masks.

Supervision Unsupervised Semi (labeled normal data) Segmentation mask

Distance Average Maximum Hausdorff Weighted Average Weighted Average Weighted Average

Dataset NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

bottle 0.426 0.186 0.448 0.585 0.510 0.764 0.495 0.421 0.567 0.607 0.461 0.639 0.531 0.438 0.584
cable 0.439 0.209 0.421 0.636 0.348 0.579 0.730 0.673 0.770 0.889 0.903 0.935 0.939 0.934 0.849

capsule 0.172 0.060 0.339 0.156 0.045 0.276 0.185 0.070 0.380 0.334 0.191 0.466 0.443 0.329 0.533
hazelnut 0.063 -0.003 0.314 0.552 0.327 0.500 0.568 0.430 0.610 0.868 0.889 0.936 0.904 0.925 0.954
metal nut 0.342 0.160 0.376 0.448 0.339 0.542 0.610 0.439 0.527 0.639 0.457 0.624 0.556 0.373 0.528

pill 0.313 0.134 0.300 0.384 0.169 0.390 0.469 0.246 0.419 0.515 0.317 0.438 0.653 0.484 0.576
screw 0.049 -0.000 0.264 0.031 -0.006 0.239 0.038 -0.007 0.251 0.376 0.267 0.418 0.592 0.505 0.672

toothbrush 0.000 -0.018 0.581 0.251 0.050 0.652 0.214 -0.008 0.599 0.214 -0.008 0.599 1.000 1.000 1.000
transistor 0.282 0.110 0.497 0.499 0.478 0.703 0.573 0.674 0.755 0.651 0.462 0.594 0.825 0.921 0.874

zipper 0.353 0.255 0.454 0.606 0.491 0.615 0.628 0.521 0.648 0.677 0.552 0.635 0.800 0.614 0.679

carpet 0.287 0.138 0.392 0.660 0.586 0.795 0.656 0.576 0.647 0.550 0.430 0.553 0.707 0.592 0.614
grid 0.158 0.033 0.326 0.129 0.018 0.308 0.143 0.018 0.304 0.258 0.093 0.361 0.137 0.019 0.312

leather 0.398 0.218 0.465 0.725 0.652 0.762 0.778 0.674 0.704 0.787 0.677 0.728 0.712 0.632 0.684
tile 0.288 0.157 0.444 0.932 0.914 0.957 0.933 0.921 0.957 0.930 0.922 0.957 1.000 1.000 1.000

wood 0.231 0.066 0.384 0.678 0.500 0.716 0.860 0.815 0.921 0.823 0.725 0.893 0.868 0.802 0.907

MTD 0.065 0.024 0.289 0.193 0.112 0.381 0.179 0.120 0.346 0.390 0.314 0.490 0.467 0.359 0.482

C.1. Implementation Details for Deep Clustering
We follow general guidelines provided by the authors of IIC [28],3 GATCluster [44],4 and SCAN [60],5 for experiments

with deep clustering methods. For IIC and SCAN, we use a ResNet-50 backbone. We replace the first step of the SCAN,
which is the self-supervised pretraining, with an ImageNet pretraining as the number of images for each dataset we consider
in the paper is relatively small (e.g., 100⇠1000, as opposed to 50k for CIFAR-10 or more than a million for ImageNet). For
GATCluster, we use the custom CNN architecture suggested by the author for ImageNet experiments.

For hyperparameters, we simply use the ones suggested by the authors. While these hyperparameters may not be optimal
for anomaly detection datasets, we believe this is fair treatment as we do not conduct serious hyperparameter tuning for our
methods.

3https://github.com/xu-ji/IIC
4https://github.com/niuchuangnn/GATCluster
5https://github.com/wvangansbeke/Unsupervised-Classification

https://github.com/xu-ji/IIC
https://github.com/niuchuangnn/GATCluster
https://github.com/wvangansbeke/Unsupervised-Classification


Table 8: Comparison to other clustering methods, including classic clustering methods such as KMeans, GMM, spectral, or
hierarchical clustering with various linkages, using maximum Hausdorff (maxH) or weighted average (WA) distances, and
deep clustering methods, such as IIC [28], GATCluster [44], or SCAN [60]. For deep clustering methods, we also provide in
the parenthesis the performance of the best training epoch chosen by the test set accuracy.

Dataset MVTec Object MVTec Texture Magnetic Tile Defect

Distance maxH WA maxH WA maxH WA

Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

KMeans – 0.429 0.301 0.544 – 0.642 0.567 0.714 – 0.204 0.135 0.374
GMM – 0.395 0.264 0.498 – 0.578 0.469 0.635 – 0.204 0.141 0.377
Spectral 0.419 0.287 0.546 0.428 0.305 0.555 0.609 0.525 0.702 0.606 0.516 0.681 0.143 0.089 0.354 0.150 0.098 0.341
Single 0.108 0.025 0.238 0.133 0.041 0.261 0.078 0.008 0.173 0.108 0.005 0.186 0.087 0.019 0.202 0.065 0.012 0.200
Complete 0.316 0.187 0.409 0.294 0.146 0.405 0.360 0.184 0.356 0.452 0.265 0.510 0.128 0.062 0.320 0.116 0.075 0.310
Average 0.245 0.109 0.328 0.276 0.095 0.345 0.223 0.064 0.294 0.400 0.213 0.398 0.080 0.024 0.242 0.094 0.034 0.284
Ward 0.415 0.275 0.526 0.451 0.346 0.553 0.625 0.534 0.708 0.674 0.601 0.707 0.193 0.112 0.381 0.179 0.120 0.346

NMI ARI F1 NMI ARI F1 NMI ARI F1

IIC 0.086 (0.170) 0.019 (0.117) 0.297 (0.366) 0.107 (0.188) 0.023 (0.096) 0.261 (0.300) 0.064 (0.034) 0.020 (0.017) 0.252 (0.230)
GATCluster 0.119 (0.265) 0.044 (0.202) 0.320 (0.475) 0.171 (0.298) 0.072 (0.202) 0.305 (0.442) 0.028 (0.113) 0.009 (0.064) 0.243 (0.333)
SCAN 0.176 (0.198) 0.078 (0.123) 0.335 (0.393) 0.277 (0.314) 0.153 (0.203) 0.335 (0.393) 0.071 (0.087) 0.029 (0.053) 0.282 (0.309)



Table 9: NMI, ARI and F1 scores of unsupervised and semi-supervised clustering methods on MVTec (object, texture)
datasets. Compared to the baseline method (“average”) that uses a holistic representation via average pooling of patch
embeddings, the multiple instance clustering framework with various distance measures, such as maximum Hausdorff or
the proposed weighted average distances, show huge improvement. We also report the performance of weighted average
distance whose weights are computed using labeled normal data (“Semi”). Furthermore, we include extended baselines
using max pooling, generalized mean pooling (GeM), sum-pooled convolutional features (SPoC) [1], and bag-of-words with
the codebook size of 512. We test each method on the random subsets including 90% images of the test set for 100 different
random seeds to compute mean and standard errors.

Supervision Unsupervised Semi

Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

Distance Average Maximum Hausdorff Weighted Average Weighted Average

MVTec (object) 0.249 0.114 0.412 0.423 0.274 0.520 0.458 0.333 0.563 0.584 0.477 0.653
std err. (0.002) (0.003) (0.004) (0.004) (0.005) (0.004) (0.003) (0.005) (0.004) (0.004) (0.006) (0.005)

MVTec (texture) 0.288 0.122 0.405 0.650 0.560 0.722 0.665 0.582 0.709 0.702 0.616 0.743
std err. (0.003) (0.003) (0.003) (0.004) (0.005) (0.005) (0.003) (0.004) (0.003) (0.004) (0.005) (0.004)

Distance Max GeM (p=20) SPoC (�=1000) Bag-of-Words

MVTec (object) 0.336 0.204 0.488 0.338 0.209 0.486 0.249 0.114 0.412 0.226 0.102 0.396
std err. (0.003) (0.004) (0.004) (0.003) (0.004) (0.004) (0.002) (0.003) (0.004) (0.003) (0.003) (0.003)

MVTec (texture) 0.598 0.478 0.658 0.602 0.482 0.660 0.288 0.122 0.405 0.312 0.126 0.359
std err. (0.004) (0.004) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004)



Table 10: Comparison to other clustering methods, including KMeans, KMedoids, GMM, spectral, and hierarchical clustering
with various linkages, using maximum Hausdorff (maxH) or weighted average (WA) distances, and deep clustering methods,
such as IIC [28], GATCluster [44], or SCAN [60]. For deep clustering methods, we provide in the parenthesis the performance
of the best training epoch chosen by test set accuracy. We test each method on the random subsets including 90% images of
the test set for 100 different random seeds to compute mean and standard errors.

Dataset MVTec (object) MVTec (texture) MTD

Distance maxH WA maxH WA maxH WA

KMeans – 0.429±0.002 – 0.637±0.002 – 0.204
GMM – 0.397±0.002 – 0.583±0.003 – 0.204
KMedoids 0.152±0.005 0.250±0.004 0.301±0.005 0.391±0.006 0.050 0.076
Spectral 0.415±0.003 0.422±0.002 0.618±0.003 0.606±0.003 0.143 0.150
Single 0.122±0.003 0.141±0.003 0.086±0.002 0.116±0.002 0.087 0.065
Complete 0.321±0.005 0.339±0.005 0.404±0.007 0.495±0.007 0.128 0.116
Average 0.225±0.005 0.213±0.002 0.272±0.007 0.367±0.007 0.080 0.094
Ward 0.423±0.004 0.458±0.003 0.650±0.004 0.665±0.003 0.193 0.179

IIC 0.086 (0.170) 0.107 (0.188) 0.064 (0.034)
GATCluster 0.119 (0.265) 0.171 (0.298) 0.028 (0.113)
SCAN 0.176 (0.198) 0.277 (0.314) 0.071 (0.087)



Figure 13: Purity of clusters with different number of clusters on MVTec dataset. Hierarchical Ward clustering is used for
clustering method with different attention strategies including uniform, top-k, and soft. Numbers in the bracket represent the
area under the curve divided by the total number of examples.


