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1. Additional details

Architectures. Detailed diagrams of the steps of our
pipeline are shown in Fig. 1. The architectures of the ag-
gregating modules are described in Fig. 2. The implemen-
tation of our system is released on the website https:
//samsunglabs.github.io/MLI.

MLI vs LDI. Since the seminal work on layered depth im-
ages (LDI) [7], multiple papers considered equipping each
pixel of the reference image with a stack of depth values.
However, the original definition of this representation [7]
assumed that the size of this stack may differ between pix-
els. In addition, any connections between pixels were not
imposed. Although later manuscripts introduced explicit
local connectivity of neighboring pixels [8], we stick to an-
other terminology and refer to our representation as a lay-
ered mesh [1] or a multilayer image (MLI) [4]. The latter
name is preferred, as it reveals the relation to multiplane
images [11]: just like them, our proxy geometry contains
semitransparent RGBA textures. On the contrary, many
methods that have been reported to employ LDI represen-
tation do not use the opacity channel [2, 9, 8, 5]. Besides,
MLI contains a predefined number of layers; therefore, each
pixel gets the same number of depth values. While the lay-
ers are non-overlapping by design, a ray from a novel cam-
era can intersect each layer in several points, justifying the
usage of z-buffer during the rasterization step. In contrast,
the original LDI representation did not need the z-buffer,
and McMillan’s warp ordering algorithm was used instead.

2. Additional results
Fig. 3 demonstrates the results of our SIMPLI method

in the case of 4 layers. Also we provide an additional
comparison with the baseline methods on publicly available
datasets [10, 6]. We show visual results for 2 input views
in Fig. 4, for 5 input views in Fig. 5 and for 8 – in Fig. 6.
These results correlate with the metrics reported in the main
text. For two or five input views, our method clearly outper-
forms all baselines and produces the most visually pleasant
results. Also, most of the crops for the eight input images
show that our method is at least on par with existing ap-

proaches. Note that all the demonstrated crops and scenes
are uncurated.

Fig. 7 demonstrates a comparison of our model with the
DeepView system [3] on the Spaces dataset [3]. We show
the results for the small and large camera baselines sepa-
rately. As may be seen from the figures, our model produces
slightly blurrier results than DeepView does. However, it al-
lows us to get a much more compact scene representation,
as was discussed in the main text. We demonstrate the vi-
sual comparison for SIMPLI with a different number of lay-
ers in the MLI representation in Figs. 4 to 6. We observe the
degradation of the quality with decreasing of the number of
layers in the final representation.
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Figure 1. The detailed diagram of our pipeline. Please zoom in for details.
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Figure 2. Architecture of aggregating modules. Please zoom in for details.
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Figure 3. Extension of Fig. 1 from the main text. The textures of MLI representation with 4 deformable layers estimated by SIMPLI. Left
to right: generated novel view, corresponding depth map, four semitransparent textures in the back-to-front order. The inferred depth map
is computed by overcomposing the per-layer depth maps w.r.t. the opacity extracted from the corresponding RGBA textures.
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Full image Ground truth IBRNet LLFF SIMPLI-2L SIMPLI-4L SIMPLI-8L

Figure 4. Results for real novel cameras with two input views given. Note that IBRNet cannot produce any information for areas
unobserved from the source views.
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Full image Ground truth IBRNet LLFF SIMPLI-2L SIMPLI-4L SIMPLI-8L

Figure 5. Results for real novel cameras with five input views given. The outputs of SIMPLI-8L are the most similar to the ground truth
frames and have less artifacts than other models.
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Full image Ground truth IBRNet LLFF SIMPLI-2L SIMPLI-4L SIMPLI-8L

Figure 6. Results for real novel cameras with eight input views given. This is the most competitive scenario. Note that both IBRNet and
LLFF tend to produce many artifacts, e.g. blurriness, while frames rendered by SIMPLI are more sharp.
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Ground truth DeepView IBRNet SIMPLI-4L SIMPLI-8L Ground truth DeepView IBRNet SIMPLI-4L SIMPLI-8L

Small camera baseline Large camera baseline

Figure 7. Results for the Spaces dataset for DeepView (40 planes) and SIMPLI with 4 and 8 layers. Our model produces more blurry and
less bright results, trading off for more compact representation of the scene.
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