
Supplementary materials
Our code is available at https://github.com/

VlSomers/bpbreid and is based on the Torchreid2

framework. The clean and modular architecture of our
framework with SOTA performance will hopefully attract
researchers looking for a strong baseline to conduct further
research on human-part based ReID. In the next section, we
provide further details on the generation of our human pars-
ing labels. We also provide further experiments on the num-
ber of body parts defined by the hyper-parameter K, and
qualitative assessment for the ranking performance and the
attention maps.

Human Parsing Labels Generation with PifPaf
Human parsing labels Y , required for training our part

attention module, are generated using the 17 part confi-
dence and 19 part affinity fields produced by the PifPaf [12]
pose estimation model. These 36 part confidence and affin-
ity fields are probability maps highlighting different human
body region, i.e., 17 human keypoints and 19 joints between
these keypoints. For further details about the encoder part
of the PifPaf model, we refer readers to [12]. We split these
36 heatmaps into K groups and perform a pixel-wise max
operation within each group to obtain K new maps high-
lighting K body regions. These K maps are then concate-
nated to produce a tensor E ∈ RH×W×K . Each of the K
groups correspond to a human semantic region (i.e. body
part). These groups are defined manually for a given value
of K. Choosing K and defining the right human semantic re-
gions is therefore part of the model hyperparameter tuning
process. For instance, with K = 8, we define the following
semantic regions: {head, left/right arm, torso, left/right leg
and left/right feet}. Each element (h,w,c) in E indicates to
which degree the spatial location (h, w) belongs to body part
c. We perform a final argmax operation on E to produce the
human parsing label map:

Y (h,w) =

0 if max
c

(E(h,w,c))< λt

1+ argmax
c

(E(h,w,c)) otherwise ,

(10)
where pixels with none of the K channel values above a

threshold λt = 0.5 are considered background. An illus-
tration of these coarse human semantic parsing labels is
given in Figure 1 for K = 5. If multiple persons are de-
tected within a sample, we assume the ReID target is the
pedestrian with its head closer to the top center part of the
bounding box and remove labels from other persons. We re-
fer readers to our GitHub for more details about the human
parsing labels generation strategy.

Instead of using PifPaf, we also tried using some popular
human parsing models (Densepose3 and SCHP4) to gen-

2https://github.com/KaiyangZhou/deep-person-reid
3https://github.com/facebookresearch/DensePose
4https://github.com/GoGoDuck912/Self-Correction-Human-Parsing

erate our human parsing labels, but obtained poor perfor-
mance because of domain transfer and low image quality in
the ReID datasets we target. Human parsing labels obtained
with PifPaf gave the best results because it provides consis-
tent predictions with few false negative on a wide range of
image resolutions.

In experiment ”BPBreID without learnable atten-
tion” from Table 2, the K body part probability maps
{M1, ...,MK} predicted by the body part attention module
are replaced by the fixed tensor E described above, on
which a channel wise softmax is applied to produce fixed
body part classification scores, used as attention weights.

Study on K, the number of body parts

In this Section, we study the impact of the number K
of body parts predicted by the body part attention mod-
ule. The body part attention module is trained using some
pre-generated human parsing labels: different labels should
therefore be used depending on the value K. The human
parsing labels are 2D human semantic segmentation maps,
where each pixel is assigned an integer value from 0 to K,
0 being the background label and values from 1 to K be-
ing labels for the K body regions. These maps are therefore
used to indicate to which body part each pixel of the input
image belongs to. Human parsing labels for a few samples
are illustrated in Figure 1. In Table 5, we report ranking per-
formance on the Occluded-Duke dataset for various values
of K and the corresponding grouping strategy. As demon-
strated in this table, best performance is reached with K = 8.
Other values of K provide too low/high granularity and lead
to reduced performance.

Qualitative comparison of ranking performance

We compare ranking performance of our model to other
works in Figure 4.

Qualitative comparison of attention maps

We compare the attentions maps of our model to other
works in Figure 5.



K R-1 mAP Grouping strategy for defining human parsing training labels
2 58.3 49.0 {upper body (torso + arms + head), lower body (legs + feet)}
3 63.0 52.0 {head, middle body (torso + arms), lower body (legs + feet)}
4 64.3 52.9 {head, torso, arms, lower body (legs + feet)}
5 65.0 53.3 {head, torso, arms, legs, feet}
6 66.1 52.5 {head, torso, right arm, left arm, legs, feet}
8 66.7 54.1 {head, torso, right arm, left arm, right leg, left leg, right foot, left foot}

11 66.5 52.9
{head, upper torso, lower torso, upper right arm, lower right arm,
upper left arm, lower right arm, right leg, left leg, right foot, left foot}

Table 5. Comparison on Occluded-Duke for different values of K, i.e., the number of body parts embeddings generated by our model,
together with the grouping strategy used to generate the corresponding target human parsing labels. These labels are used to train the body
part attention module and indicate to which human body region (or background) each pixel in the input image belongs to. The last column
details the semantic meaning of each of the K body parts.
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Figure 4. We compare the ranking performance of our model BPBreID with other methods: the part-based transformer method with part
discovery PAT [13] and our baseline, the global method BoT [14]. As illustrated in this figure, BoT cannot handle occlusions and PAT is
inferior in terms of detecting and aligning fine-grained local appearance features.
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Figure 5. We compare the attentions maps produced by our model BPBreID (on test images unseen at training) with the attention maps from
other state-of-the-art part-based methods: ISP [46] and PAT [13]. ”Fg” refers to the foreground attention maps, which is obtained by fusing
maps from all parts together. Green/red borders illustrate visible/unvisible parts and no color is displayed for PAT because this method is
not designed with a visibility score mechanism. Both ISP and PAT use part-discovery to define the human semantic regions, which can
lead to missed part, background clutter or feature misalignment. As illustrated in this figure, our attention maps doesn’t suffer from these
issues. However, unlike these methods, our method only detects body parts and no belongings, such as bags or umbrellas. Moreover, most
part-based methods (such as PAT [13], ISP [46], HOReID [5], ...) tries to make each part-based embedding discriminative on its own. This
is performed by either incorporating global information into each local embedding [5], or by having each part attending to multiple regions
of target person body [13], or by mining discriminative local features [46], as illustrated in this Figure. Different from these methods, we
learn part-based embeddings that well represent their associated body-part, without the requirement of being discriminative on their own,
but with the requirement of being discriminative when used as a whole. The PifPaf row illustrate the coarse PifPaf part confidence and
affinity fields described in the first section of these supplementary materials (tensor E for K = 5), from which we derive our human parsing
labels used at training.


