Supplemental Document
AudioViewer: Learning to Visualize Sounds

This document supplements the main paper by providing
more analysis with the related works, more implementa-
tion details, content and style disentanglement, an additional
ablation study regarding the translation network 7°, an ad-
ditional analysis on the human study, and training details.
We also prepared an additional supplemental video that con-
tains audio and video snippets that can not be played in a
conventional PDF. These give additional qualitative results
for spoken sentences and environment sounds.

Licenses. The used audio datesets TIMIT dataset [2]] and
ESC-50 dataset [S] in our experiments are public. TIMIT
dataset [2] is under the terms of LDC User Agreement
for Non-Members license and ESC-50 dataset [5] is un-
der the terms of the Creative Commons Attribution Non-
Commercial license.

Risk mitigation and scope. Sensory substitution bears
non-negligible risks. Our comparative study design is ap-
proved by our IRB to have a low risk. Whether an entire
language can be learned will require psychophysical studies
controlled by domain experts to mitigate the risk of side
effects on long-term participants.

1. Relationship Between AudioViewer and the
Audio-to-Scene, Audio-to-Text Methods

We would like to highlight that we do not attempt to
compete with but to complement existing high-level audio
translation methods. Ours addresses a scenario that they can-
not handle. The goal of mapping sound to a scene, such as an
airplaine or car for their respective engine noise, is to gener-
ate the possible corresponding environment image related to
the sound information. This does not address the direct trans-
lation of sound signals that is desired for learning to speak
and other tasks requiring low-level feedback. In a similar
vein, mapping speech to text could be applied to adult who
want to understand a conversation, but not to children who
learn to read only at age 6-8, and not for learning pronoun-
ciation in general as no tonal feedback is given. Learning
to speak requires a low-level mapping, like the frequency
visualization currently applied and the method we developed.
We believe it is particularly important as early childhood
learning is hampered by hearing deficits. The related work
section highlights the advantages and disadvantages. We

cannot use these methods as baselines as they do not apply
to our setting, e.g., to distinguish individual phones. The
goal of our approach is to learn a phoneme-level mapping
between sound and visual signals. So we choose the most
closely related low-level mapping methods including audio
to lip motion and audio to Mel Spectrogram methods as our
baselines.

2. Implementation Details

The architecture of audio VAE is shown in Figure[T] We
train the audio modules for 300 epochs with batch size 128
and initial learning rate 10~3. We train the low resolution
CelebA visual models for 38 epochs and MNIST visual
models for 24 epochs with batch size 144 and fixed learning
rate 0.005. Figure 2] shows its architecture. For the visual
model with high resolution, we use the pre-trained Soft-
IntroVAE model [1] provided by the authors. We use two
different strategies to link the audio and visual latent spaces.
When mapping the audio inputs to low resolution facial and
digital images, we fix the audio model and fine tune the
visual model on audio and image examples for 10 audio
epochs. When linking the audio signals to high resolution
facial images, we train the translation module 7' instead
of the entire visual model, whose architecture is shown in
Figure 3] with fixed audio model and visual model on audio
examples for 10 audio epochs. For optimization, we use
Adam [4] with parameters 51 = 0.95, 82 = 0.999, ¢ =
1078,

3. Results on Environment Sounds

With the style disentangling training of our AudioViewer
method, the audio model is more specific to human speech
than general sounds. In the following, we test the generaliza-
tion capability of our method (trained on the speach TIMIT
dataset [2]]) on the ESC-50 environment sound dataset [3]].

Table[T|shows the reconstruction accuracy when going via
the audio and video VAEs (see Information Throughput sec-
tion in the main document). The SNR for reconstructed Mel
spectrum is generally lower than the speech dataset, which is
expected since it was trained on the latter. The analysis of the
reconstruction ability of the audio VAE in isolation (without
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Figure 1. AudioVAE Framework. (a) and (b) illustrate, respectively, the encoder and decoder parts of the audio model.
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Figure 2. Visual VAE Framework. (a) and (b) illustrate, respectively, the encoder and decoder parts of the video model.

going through the video VAE) reported in Table 2] shows that
a large fraction of this loss of accuracy stems from the learn-
ing of speech specific features of the audio VAE. Moreover,
with a recombined reconstruction loss term on the human
speech dataset, the model was fitted to speech features and
tended to loss high pitch information. Still, according to
the face visualization of the content encoding as we showed
in the supplemental video, our AudioViewer can generate
consistent visualization to given environment sounds.

4. Disentangling content and style

We construct a SpeechVAE that disentangles the
style (speaker identity) content (phonemes) in the latent
encodings, i.e., the latent encoding z = [21,- - - , 24]7 € R?
can be separated as a style part z; = [21,- -+, 2z,,]7 and a
content part z. = |21, , 24|’ , where d is the whole
audio latent space dimension and m in the audio style latent
space dimension.

We use an audio dataset with phone and speaker ID anno-
tation. However, this still requires to disentangle the audio
signal into style and content codes, which we obtain similarly
to [6] by mixing embeddings from different speakers. Fig-
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Figure 3. Translation Networks. (a) and (b) illustrate the translation networks mapping audio signal to visual signal, and vice verse.

ure ] gives an overview. At training time, we feed triplets of
mel spectrogram segments T 5 ; j = {Mg;, My i, Mg ; },
where M, ; and M, ; are the same phoneme sequence p;
spoken by different speakers s, and s; respectively, and
M, ; shares the speaker s, with the first segment but a
different phoneme sequence. Each element of the input
triplet is encoded individually by F 4, forming latent triplet
{za,iv Zb,is Za,j} = {[Zsa ’ ZCi]T7 [sz z/ci]T’ [Z;a ) ch]T}’
instead of reconstructing the inputs from the correspond-
ing latent encodings in an autoencoder, we reconstructed the

Table 1. Information throughput on environment sounds, show-
ing that the reconstruction error increases when evaluating on a
test set that contains sounds vastly different from the training set
(speech vs. environment sounds).

Audio models Visual models SNR(dB)
Audio PCA Visual PCA 17.23
DFC-VAE on CelebA 1.03
DFC-VAE on MNIST 2.22
SpecchVAE DFC-VAE on CelebA (refined w/ £ ycic) 2.83
DFC-VAE on MNIST (refiend W/ Leyc1e) 0.76
DFC-VAE on CelebA 0.46
SpeechVAE W/ L, 105 mse, DFC-VAE on MNIST 0.46
L, dim=256 DFC-VAE on CelebA (refined W/ L.y cie) 1.26
DFC-VAE on MNIST (refiend W/ Lcyc1c) 1.68

Table 2. Audio VAE mel spectrum reconstruction. The average
SNR of autoencoding and decoding mel spectrograms on ESC-50
shows a significant reconstruction loss. The average speed and
acceleration between the latent vector (dim = 128) of neighbouring
frames (At = 0.04s) confirms the experiments in the main docu-
ment, that smoothness comes at the cost of lower reconstruction
accuracy.

Audio models SNR (dB) Velocity (s™!)  Acc.(s™2)

Audio PCA 17.23 170.13 6960.80
SpeechVAE[3] 10.17 172.57 7331.77
SpeechVAE W/ L, 105 MSE 8.92 58.78 1859.95
SpeechVAE w/ L, 2.98 40.54 1580.86
SpeechVAE W/ L, 105 M5Es Lrr 2.19 30.66 909.39
SpeechVAE W/ L), 105 M5E Lrrr dim=256 2.51 33.88 1037.97

Recombined reconstruction loss
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Figure 4. Disentanglement, by mixing content encodings from two
speakers saying the same phones (z.; with z'ci) and style encodings
from the same speaker saying different words (zs, with zj).

first sample M, ; from a recombined latent encoding of the
other two, z,, ; = [z, ,z..]". Formally, we replaced the re-

construction loss term in the VAE objective by a recombined
reconstruction loss term,

Lrr(Tapig) = Egy(ar My M, ) (108 po(Mail2y, ;).
ey
This setup forces the model to learn separate encodings
for the style and phoneme information while not requiring
additional loss terms.

Note that we could alternatively enforce z, ; to be close
to z;ﬂ- without decoding (the unused z,, ; in Figure 4). How-
ever, an additional L2 loss on the latent space led to a bias
towards zero and lower reconstruction scores than the pro-
posed mixing strategy that works with the original VAE
objective.



Children

Our Full Model

Without T / Ei
Figure 5. The functionality of the translation network 7'. Here
we simply repeat the audio latent codes to match different latent
space dimensions and support. Compared with the results of our
full model, the smoothness of the generated image sequences is
poor.

5. Ablation study on translation network 7’

The translation network 7" is used to build the bridge be-
tween audio-vision latent spaces with different dimensions
and support. To evaluate the function of 7', we tried in pre-
liminary experiments to replace 7' by simply repeating the
audio latent code to match latent space dimension. Figure [3]
shows that the resulting image sequences have poor smooth-
ness as their support is not matched. This is confirmed with
a low throughput score of —0.22, showing that the sound
information is lost by mapping to regions that the image
decoder does not support.

6. Human study I - Discriminating Sounds

The study was conducted with 22, 14, 15, 12, 14,
14, 14 participants for the CelebA-HQ-content, CelebA-
content, CelebA-style, CelebA-combined, MNIST-content,
MakeltTalk [7] and mel spectrogram (MEL) questionnaires,
respectively. Each version of the questionnaire asked the
same set of 29 questions with randomized ordering of an-
swers within each question. It took participants between
10-15 minutes to complete the each questionnaire. The ques-
tionnaire asked participant to perform two possible tasks:
matching and grouping visualizations. The format of the
questionnaire is outlined in Table 3] The questions tested
for two factors: sound content, sounds that share the same
phoneme sequences, and sound style, sounds produced by
speakers of the same sex or speaker dialect. In total, we
tested 100 different sounds and words. This purely visual
comparison allows us analyze different aspects of the trans-
lation task individually.

Matching questions Matching questions asked the partici-
pants to choose which of two possible visualizations which
is most visually similar to a given reference visual. Fig-
ure [6] shows examples of matching questions. Matching
questions were used to assess the viability for users to dis-
tinguish between the same sounds produced by speakers
possessing different speaker traits as well as determining
whether structural similarities in the underlying audio trans-
lated into similarities in the visualization. In particular, the
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Figure 6. Matching Example. Examples from the CelebA-HQ-
content, CelebA-combined, MNIST-content, MEL questionnaire of
a matching question asked to participants in the user study.
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Figure 7. Grouping Example. Examples from the CelebA-HQ-
content, CelebA-combined, MNIST-content and MEL question-
naire of a grouping question asked to participants in the user study.

Table 3. A breakdown of the questionnaire format by sound type
and tested factors, listing their frequency of occurrence.

Question type  Sound type  Tested factor Questions
Phone- Content 3
R Style (sex) 3
Matching pairs Style (dialect) 2
questions Content 3
Words Style (sex) 3
Style (dialect) 2
Phone- Content + style (dialect) 2
pairs Content + style (dialect + sex) 2
Grouping Content 3
questions Content + style (dialect) 2
Words Content + style (sex) 1
Content + style (dialect + sex) 1
Content (similar sounding words) 2
Total 29

questionnaire contained 6 questions for evaluating the abil-
ity to distinguish between sound content, which compared
visualizations of sounds of different phoneme sequences (3
for phoneme-pairs and 3 for words). Phone-pairs are short
in length and therefore the corresponding visualisation was
a single frame image, whereas visualisations of words were
videos. In order to evaluate the ability to distinguish between
sound style, 6 questions compared visualizations of the same
phoneme sequence between male and female speakers and 4



Table 4. User study results. Values indicate mean accuracy and
standard error for distinguishing between visualizations of the
tested factor across participants as a percentage. The disentan-
gled representation clearly outperforms the combined baseline.

Tested Factor ~PCA-Baseline CelebA-disentangled CelebA-combined

Content 38.4 85.0+ 1.8 72.8+£2.9
Style (dialect) 50.0 56.7 +5.7 39.6 £ 7.2
Style (sex) 433 78.0 +2.8 43.3+ 2.6
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Figure 8. Model Comparison on content questions. The mean
user accuracy and standard error for distinguishing phoneme se-
quences is compared between the models, annotated with the sig-
nificance level (T for 0.05 < p < 0.1, * for p < 0.05, ** for
p < 0.01). The mean accuracy for random guessing is 0.384.

questions for distinguishing between speakers of different
dialects. In total there were 16 matching questions. Since
each question has two options, the expected mean accuracy
for random guessing is 50%.
Grouping questions. Grouping questions asked the par-
ticipants to group 4 visualizations into two pairs of similar
visualizations. Figure[7]shows examples of grouping ques-
tions. Grouping questions were used to assess the degree to
which visualizations of different words are distinguishable
and visualizations of the same word are similar. In particu-
lar, the study required users to group visualizations of two
pairs of sounds, whereby different pairs are sound clips with
shared factors of the same sound content or same sound style.
In total, the human study consisted of 4 grouping questions
based on phone-pairs and 9 grouping questions based on
words. Since there are three possible options, the expected
mean accuracy for random guessing is 33.3%.
Results. For each of the models, we tested for sound content:
phoneme sequences, and sound style: speaker dialect and
speaker sound. We generated the mean accuracy and stan-
dard deviation for each tested factor and each question sub
type. Table[dextends the results shown in the main document
by comparing entangled and disentangled representations.
The results of the disentangled models with CelebA visual-
izations (CelebA-disentangled) is aggregated by taking the
results of CelebA-content on the questions which tested for
sound content and the results of CelebA-style on questions
which tested for sound style.

We analyze the significance of our improvements by re-
porting accuracy, standard error, and using the student-t test.
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Figure 9. Model Comparison on style questions. The mean user
accuracy and standard error for distinguishing speaker sex (left) and
dialect(right) is compared between the models, annotated with the
significance level (T for 0.05 < p < 0.1, *** for p < 0.001). The
mean accuracies for random guessing are 0.43 and 0.5 respectively.

For MEL the accuracy is 66.2 + 1.3 with (p = Te—12)
and for MakeltTalk [7] the accuracy is is 47.7 £ 2.7 with
(p = 6e—12). Figure §|shows the significance of our other
models, it illustrates that users achieve the overall accuracy
on the CelebA-disentangled model with 85.0 + 1.8% (sig-
nificant with p < 0.05) for distinguishing between visual-
izations of different content. The MNIST-content model
has the highest accuracy for distinguishing between dif-
ferent phone pairs with 91.8 + 2.5%, although not sig-
nificantly higher than the CelebA-disentangled one with
(p > 0.05), but has a much lower accuracy for distinguishing
between different words, suggesting that the MNIST visual-
izations may be better suited for representing shorter sounds.
The CelebA-disentangled model outperforms the CelebA-
combined model for distinguishing between speakers of dif-
ferent sex with 78.0 £ 2.8% (significant with p < 0.001)
and between speakers of different dialects with 56.7 + 5.7%
(marginally significant with 0.05 < p < 0.10) as shown
in Figure [9] The task of distinguishing between different
speakers of different dialects is much more difficult than
distinguishing between phoneme sequences since there are
8 categories of dialects in the dataset and differences in di-
alects are much more subtle and can contain often contain
overlaps. Significance comparing model means were cal-
culated using a two-sample two-tailed t-test with unequal
variance and without any outlier rejection.

7. Human study II - Learning Sounds

In the second study, we evaluate whether participants can
learn to recognize sounds from our visualizations. Conceiv-
able large scale studies would require a large amount of time
to train users, which would take months and and be very
expensive when scaling to a representative group size. It is
hence not effective for comparing our algorithm variations
and unsuitable for establishing a benchmark for future meth-
ods. To more effectively evaluate methods, we set human
studies in a simple but representative environment that can
quickly be repeated with a new cohort of participants to
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Figure 10. Learning study examples. A video generated by the
disentangled content model (left)/MEL (right) is shown to evaluate
the participants’ capability in learning to recognize sounds from
visual contexts. Each video corresponds to one variant of four word
labels.
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Figure 11. Sound embedding distance visualized by the latent
embedding of each word’s speech projected to 2D. The same color
points correspond to different sounds of the same word.

compare the latest methods. Specifically, as described in the
main paper, we design a small speech dataset containing 16
words, 4 words with different meanings spoken by different
people. Among them, ’that’ and ’there’ are pronounced with
similar length and phonemes (phone editing distance of one
or two, depending on the pronunciation), while ’potatoes’
and ’shellfish’ are pronounced in similar length but contain
completely different phonemes (editing distance 8 or more).
Note that we chose word pairs that have a similar length as
words of different length would make it easy to distinguish
simply by the length of the generated video.

To further analyze the distance between the chosen words,
we visualize the latent distance between sounds in Figure
We randomly select 12 words, each word is spoken by 4
different people. We first encode them to the latent space.
Then we expand the latent codes of all words to the same di-
mension by filling in one for shorter ones. Finally, we embed
them into two dimensions using PCA to preserve distances in
the original high-dimensional space. This embedding shows
that "there’ and ’that’ is very close in the embedding while
"patatoes’ and ’shellfish’ are separated by other words (light
green). Please note that this is a non-linear embedding from

high-dimensional space that best approximates distances but
contains some deformation. Moreover, due to the concate-
nation and one padding, a slight differences in duration or
speed would lead to quite different word embeddings. How-
ever, we did not see another way of visualizing such word
embedding in a 2D space.

To showcase the robustness to different speakers, we
included words spoken by people with two different dialects.
To ensure a fair comparison to using the MEL specturm
baseline, we decided to only test on words spoken by the
same gender (male speakers). Otherwise, the MEL spectrum
of female speakers would look very different from male
speakers due to their higher pitch. This would lead to slower
learning on MEL and results would hence only support the
better gender normalization of our method (as validated in
Study I) instead of validating better learnability. Words are
given in random order to participants in order to avoid any
bias towards the visualizations that appear first.

We considered testing the learning of sentences or phones
(cf. Study I on distinguishing but not learning). However,
entire sentences are longer and contain more information
than a single word. Hence, it would be easier to distinguish
them. Moreover, single phones map only to a single frame
and hence would not test the continuous translation into a
video. Since our approach is a low-level sound visualiza-
tion method, it is more challenging and suitable to select
words than either sentences or single phones for evaluating
learnability.

Examples of user learning are shown in Figure[I0] The
learnability of our method is evaluated by comparing the
tracking of the changes in the accuracy curves between our
model and MEL.

Results. We recruited 9 participants for human study II. It
took participants between 10-15 minutes to complete each
variant. During the learning period, samples are shown in
a random order to avoid bias to the ordering. The learning
curves are reported in the main document. The accuracy after
16 rounds of learning is for Ours 87.0% vs. MEL 57.8%,
a significant improvement with (p = 0.016). We conclude
that compared to spectogram representations, our mapping to
images of faces or digits is more natural and easier for people
to distinguish and match. Whether remaining ambiguities
could be overcome by longer learning sessions and how the
learning can be further facilitated remains an open question
for future work. The main paper discusses the results in
more detail.
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