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A. More experiments

A.1. Setup

Network size and pretraining The ViT-B transformer en-
coder and the R50+ViT-B hybrid have 86M and 98M param-
eters respectively and are pretrained on ImageNet-21k. The
additional components of DToP have only 0.3M parameters.
The common competitors Resnet50/101 have 25M and 44M
parameters respectively and are pretrained on ImageNet-1k.
Despite its lower dimensionality (1,536 vs. 2,048 dimensions
for Resnet101), our DToP-R50+ViT-B is of course in a priv-
iledged position over Resnet101 in terms of both network
size and pretraining data. Still, it is important that a trans-
former reaches SOTA on image retrieval for the first time.
Our objective is not to introduce a new architecture.
Training settings We apply random cropping, illumina-
tion and scaling augmentation. We use a batch size of 64
and the ArcFace loss with margin 0.15. We optimize by
stochastic gradient descent with momentum 0.9, initial learn-
ing rate 10�3 and cosine learning rate decay with the decay
factor 10�4. We apply warm-up of 0, 3, 5 and 5 epochs on
NC-clean, SfM-120k, GLDv1-noisy and GLDv2-clean, re-
spectively. We implement our method on PyTorch and we
train our models on 8 TITAN RTX 3090Ti GPUs.

A.2. Benchmarking of vision transformer models

Vision transformer studies have exploded in a short period
of time, but very few concern image retrieval. We perform
for the first time an extensive empirical study to benchmark a
large number of vision transformer models on image retrieval
and choose the best performing one as our default backbone.
Candidate models We fine-tune on image retrieval train-
ing sets, so we only consider models that are pre-trained
on ImageNet-1k or ImageNet-21k [13]. In particular, we
consider the models shown in Table A4.

As global image representation, all models use a [CLS]
(classification) token embedding, while PiT [26] and
DeiT [28] also provide a distillation token embedding. As
a local image representation, patch token embeddings can
be used for all models, while for the hybrid R50+ViT-B, fea-

MODEL CLS DIST PATCH CNN MS

Swin [40] X X
ConViT [12] X X
TNT [22] X X
ViL [76] X X X
CvT [67] X X X
LocalViT [35] X X X
Patch [18] X X X
T2T [75] X X X
DeepViT [77] X X X
LV-ViT [30] X X X
PiT [26] X X X X
DeiT (DeiT-B) [28] X X X X
ViT (ViT-B) [32] X X X
ViT (R50+ViT-B) X X X X

Table A4: Feature types that can be extracted from different pre-trained
vision transformer models considered in our study. CLS: classification
token; Dist: distillation token; Patch: patch tokens. CNN: convolutional
stem (hybrid model). MS: can handle multi-scale input at training (required
in our experiments).

tures of the CNN stem can also be used. Certain pre-trained
models, in particular Swin [40], ConViT [12] and TNT [22],
cannot handle multi-scale input. These models are not com-
patible with the group-size sampling approach that we adopt
for training [73]. This constraint is not due to the architec-
ture itself but to the way the code is written, and although it
would be certainly possible to fix, this would require some
effort. We therefore exclude them from our benchmark.

Setup We take all models as pre-trained on either
ImageNet-1k or ImageNet-21k and fine-tune them on SfM-
120k [52]. We use only the global branch (7) on multi-layer
[CLS] features (5) or the local branch (10) on multi-layer
patch features (6). In the former case, we also evaluate multi-
layer distillation features, replacing [CLS] by the distilla-
tion token where it exists, i.e., PiT [26] and DeiT [28]. In
the latter case, we do not use the enhanced locality mod-
ule (ELM), that is, we set Y 0 = Y in (9). At the output,
instead of (12), we only use an FC layer with output feature
dimension N = 768. We use group-size sampling [73] with
our dynamic position embedding (DPE) (2). We use default
training settings, except without warm-up.

At inference, we evaluate each model with exactly the



same type of features as at training ([CLS], distillation or
patch), applying supervised whitening [52] on multi-scale
features [52] and measuring mAP on the evaluation sets.
Results Table A5 shows the results of the benchmark.
In the majority of cases, we can see that [CLS] outper-
forms patch features: CvT-21 [67], LocalViT-S [35], LV-ViT-
M [30], DeiT-B [28], ViT-B [32], R50+ViT-B [32]. However,
in many cases, the opposite holds: Patch-ViT-B [18], T2T-
ViT-24 [75], DeepViT-B [77]. In few cases, the performance
is similar or inconsistent: ViL-B [76], PiT-B [26]. As for the
distillation token, it works consistently better than [CLS]
for DeiT-B [28], but for PiT-B [26] there is no clear winner.
Overall, we observe that when multi-layer features are used
for image retrieval, [CLS] does not work necessarily bet-
ter than global average pooling. ImageNet-21k is also not
necessarily better than the smaller ImageNet-1k as a training
set; for example, Patch-ViT-B [18] using [CLS] performs
worse overall using this training set.

Using the [CLS] token, the hybrid model R50+ViT-
B [32] is a clear winner overall, also better than the same
model using patch features. The second and third best are
CvT-21 [67] using [CLS] and DeiT-B [28] using distillation
token, respectively. The hybrid model has more parameters
(98M) than the plain ViT-B [32]/DeiT-B [28] (86M) and a
lot more than CvT-21 [67] (31M) and the majority of models.
It is also pretrained on the larger ImageNet-21k training set.
In this sense, this is not a fair comparison. There are many
other factors that are not shown here, like distillation from a
stronger model by DeiT-B [28] and PiT-B [26].

We choose R50+ViT-B [32] as the default backbone in
our experiments for two reasons: (a) Our objective is to ex-
plore how much vision transformers can improve on image
retrieval; and (b) its improvement over other models on the
Hard protocol is more pronounced, implying it is a much
stronger model. We suspect that its improvement is also sig-
nificant in the presence of the challenging R1M distractors,
although we cannot benchmark all models for this. What we
can suggest as a more lightweight alternative is CvT-21 [67].

A.3. More results

Summary of progress per dataset Table A6(a) and Fig-
ure A5(a) show statistics of open datasets that have been used
as training sets for landmark image retrieval; in particular,
number of classes and number of images per dataset. There is
a variety of dataset sizes, both in terms of classes and images.
In our experiments, we focus on the most commonly used
datasets in the literature, that is, neural code (NC) clean [19],
structure-from-motion 120k (SfM-120k) [52], Google land-
marks v1 (GLDv1) noisy [46] and Google landmarks v2
(GLDv2) clean [65].

Table A6(b) and Figure A5(b) show the progress over the
SOTA that we bring per dataset, based on global features.
We compare separately per training set, in terms of mAP
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Figure A5: (a) Open landmark training set statistics, from Table A6(a). (b)
Average mAP comparison of our vs. previous SOTA models based on global
features. Average taken over ROxf and RPar test sets in RMedium and
RHard protocols (four columns) in Table 1. Previous SOTA models are as
shown in Table A6(b).

averaged over four columns of Table 1. We observe that as
the number of training images increases, the performance
also increases. Our models bring clear improvement on all
training sets, with the improvement being more pronounced
on small and noisy training sets.

A.4. More ablation experiments

Like subsection 4.4, all experiments here are conducted
on SfM-120k by default. We investigate the effect of different
factors on the performance of our full model DToP-R50+ViT-
B, including the number of layers k, DPE against baselines,
ELM components, the feature dimension N , multi-scale
features at inference, mini-batch sampling as well as fusion
alternatives for (9).
Number of layers Table A8 shows the effect of the number
of layers k in the multi-layer features (5),(6). The optimal
number of layers is k = 6. The effect of k is significant,
especially in the Hard protocol, yielding an improvement of
6.1% mAP over the baseline k = 1 on ROxf. What is less
understood is that k = 12 works as well.
Dynamic position embedding In Table A9 we compare
our DPE with baselines and assess the effect of interpolation
type we use in DPE. Bi-linear interpolation is best, outper-
forming the baseline by nearly 20% on RPar Hard.
ELM components In Table A10 we study the effect of dif-
ferent components of the enhanced locality module (ELM).
It is clear that all components contribute to the performance
of ELM in the absence of the CNN stem. In the hybrid ar-
chitecture, they are effective on Oxf5k and ROxf but not on
Par6k and RPar. This result is in agreement with Table 3,
where ELM is most effective in the absence of other forms
of inductive bias.
Feature dimension The global representation obtained by
our DToP model is given by (12) and is a vector of dimension



MODEL PRE-TRAIN
PARAMS

(M)

GLOBAL (CLS/DIST) LOCAL (PATCH)

TOKEN OXF5K PAR6K
MEDIUM HARD OXF5K PAR6K

MEDIUM HARD

ROxf RPar ROxf RPar ROxf RPar ROxf RPar

T2T-ViT-24 [75] ImageNet-1k 64 CLS 35.3 49.3 14.2 35.5 2.0 10.6 65.0 72.0 42.0 52.1 18.6 22.8
DeepViT-B [77] ImageNet-1k 48 CLS 43.9 56.9 21.1 41.7 4.2 13.4 50.4 62.1 27.7 46.2 7.1 18.2
LocalViT-S [35] ImageNet-1k 22 CLS 65.0 71.3 38.4 53.0 14.9 22.1 62.1 71.4 36.5 50.9 11.2 19.1
LV-ViT-M [30] ImageNet-1k 39 CLS 72.4 79.2 45.4 65.2 19.6 28.9 42.1 57.1 25.6 45.8 11.4 20.9

Patch-ViT-B [18] ImageNet-21k 86 CLS 28.8 38.7 13.5 28.5 1.7 8.0 59.5 68.9 34.5 50.6 13.1 18.6
ViL-B [76] ImageNet-21k 55 CLS 42.6 56.0 20.7 39.5 3.1 12.8 43.6 51.1 20.1 36.4 3.1 10.8
CvT-21 [67] ImageNet-21k 31 CLS 84.0 87.8 61.3 78.8 30.8 56.7 77.6 81.6 54.6 76.4 25.7 52.9

PiT-B [26] ImageNet-1k 73 CLS 69.0 77.0 43.6 59.1 19.8 28.7 70.9 81.2 42.4 64.8 18.9 35.5DIST 66.1 78.5 41.5 60.6 15.5 30.1

DeiT-B [28] ImageNet-1k 86 CLS 82.3 84.1 59.6 67.6 29.1 46.5
80.7 78.5 54.7 64.5 22.7 37.2DIST 84.2 85.5 62.4 71.2 32.6 49.7

ViT-B [32] ImageNet-21k 86 CLS 76.2 83.4 49.3 70.9 19.6 46.4 60.4 81.0 38.6 69.2 12.0 46.9
R50+ViT-B [32] ImageNet-21k 98 CLS 84.3 87.9 62.6 79.6 37.9 64.8 74.6 82.8 50.9 69.4 26.9 46.5

Table A5: mAP comparison of different pre-trained vision transformer models, using multilayer [CLS] or distillation (DIST) token features from our
global branch (7), or multi-layer patch features from the local branch (10), without ELM (11). All options give rise to a global representation of N = 768
dimensions; patch features undergo global average pooling. Fine-tuning on SfM-120k [52] using default settings.

TRAIN SET
(a) STATISTICS (b) IMPROVEMENT

#CLASSES #IMAGES PREVIOUS SOTA OURS GAIN

NC-noisy [2] 672 213,678
NC-clean [19] 581 27,965 RMAC [19, 50] 57.9 62.8 +4.9
SfM-120k [52] 713 117,369 GeM [52, 50] 59.2 65.1 +5.9
GLDv1-noisy [46] 14,951 1,225,029 SOLAR [43] 66.0 72.0 +6.0
GLDv2-noisy [65] 203,094 4,132,914
GLDv2-clean [65] 81,313 1,580,470 DOLG [72] 78.0 80.4 +2.4

Table A6: (a) Open landmark training set statistics. Bold: datasets used in
our experiments. (b) Average mAP comparison of our vs. previous SOTA
models based on global features. Average taken over ROxf and RPar eval-
uation sets in RMedium and RHard protocols (four columns) in Table 1.

DIM
N

OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

128 80.7 89.1 56.7 78.5 29.6 59.3
256 87.4 90.1 63.1 80.2 35.8 62.2
512 88.0 91.1 64.9 82.1 38.6 64.7
768 88.8 91.8 67.5 82.1 41.7 64.8

1,024 86.3 92.7 64.4 83.1 38.4 66.5

1,536 89.7 92.7 68.5 83.1 43.0 65.8
2,048 89.3 93.0 65.8 82.9 39.0 65.8

Table A7: mAP comparison of different dimension N of output features (12)
of our full model. Training on SfM-120k. Using supervised whitening [52].

N . Table A7 shows the effect of the choice of this dimension.
Clearly, the best performance is obtained by N = 1, 536,
by a larger margin on ROxford (medium or hard). A larger
dimension does not necessarily mean better performance.

Multi-scale Following previous work [19, 52], we use a
multi-scale image representation with 3 scales at inference
by computing the output features (12) for each scale of the in-

LAYERS OXF5K PAR6K
MEDIUM HARD

k ROxf RPar ROxf RPar

1 87.2 92.4 64.9 81.3 37.6 62.7
3 88.0 91.1 64.9 82.1 38.6 64.7
6 89.7 92.7 68.5 83.1 43.0 65.8

9 87.1 93.1 66.8 82.4 41.4 64.2
12 89.0 92.4 68.1 83.0 43.2 65.5

Table A8: mAP comparison of using different number of layers k in the
multi-layer features (5),(6). Training on SfM-120k.

PE TYPE OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

no PE 82.8 85.7 59.7 73.9 32.5 47.4
CPE [11] 85.9 88.8 62.6 77.9 37.1 58.2
DPE (bi-cubic) 87.6 91.0 65.2 82.2 38.3 64.6
DPE (bi-linear) 89.7 92.7 68.5 83.1 43.0 65.8

Table A9: mAP comparison of our (bi-linear and bi-cubic) dynamic position
embedding (DPE) (2) with no position embedding and with conditional
position embedding (CPE) [11]. Training on SfM-120k.

put image and averaging the features over scales. Table A11
shows the effect of using multi-scale vs. single-scale repre-
sentation on queries or database. Clearly, using a multi-scale
representation on the database works best. As for the queries,
the results are not consistent across datasets, but the gain
brought by multi-scale queries on RParis is more than the
loss on ROxford. We thus choose a multi-scale representa-
tion on both queries and database.
Mini-batch sampling As discussed in subsection 3.2, we
use group-size sampling [73] to account for different sizes
and aspect ratios of input images, while maintaining the same
size for all images in a mini-batch. This strategy results



CNN Stem IRB ASPP WB OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

X X 78.6 87.8 55.2 77.4 27.1 55.1
X X 75.8 87.8 52.9 77.5 28.7 53.7
X X 80.1 88.2 59.8 77.7 28.8 54.2
X X X 81.5 89.8 61.4 79.7 32.5 57.4

X X X 84.9 92.7 64.8 83.4 42.4 65.7
X X X 85.3 93.0 65.7 83.0 42.8 65.4
X X X 87.0 92.0 66.5 82.7 42.8 65.1
X X X X 89.7 92.7 68.5 83.1 43.0 65.8

Table A10: mAP comparison of variants of enhanced locality module (ELM)
with/without different components. IRB: inverted residual block [55]; ASPP:
à trous spatial pyramid pooling [7]; WB: WaveBlock [63]. Training on SfM-
120k.

QUERY DATABASE OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

Single Single 89.4 92.2 68.2 82.2 43.0 64.0
Multi Single 90.1 92.5 68.6 82.8 43.1 65.1
Single Multi 89.4 92.4 68.8 82.6 43.8 64.9
Multi Multi 89.7 92.7 68.5 83.1 43.0 65.8

Table A11: mAP comparison of multi-scale vs. single-scale representation
on queries or database. Training on SfM-120k.

SAMPLING OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

Fixed-size 83.2 90.6 60.5 79.5 35.7 59.8
Group-size [73] 89.7 92.7 68.5 83.1 43.0 65.8

Table A12: mAP comparison of fixed-size (384 ⇥ 384) vs. group-size
sampling [73] of mini-batches at training. Training on SfM-120k.

METHOD OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

No fusion (w/o ELM) 89.8 91.2 67.6 81.1 40.7 62.5
No fusion (w/ ELM) 85.9 91.9 64.6 82.6 40.6 65.4

Sum 89.5 91.7 68.4 82.1 43.4 64.2
Hadamard product 89.8 92.0 68.2 83.1 43.5 66.0
Concatenation 88.8 92.5 67.5 82.7 43.9 64.9
Fast normalized [59] 89.8 92.1 68.7 82.4 43.9 65.0
Orthogonal [72] 89.7 92.7 68.5 83.1 43.0 65.8

Table A13: mAP comparison of different feature fusion methods for the
input and output of ELM (9). Training on SfM-120k.

in a dynamic image size per mini-batch and we use our
dynamic position embedding (2) in this case. Table A12
shows the performance of this strategy compared with fixed-
size (384 ⇥ 384) images for all mini-batches. It is clear
that group-size sampling improves performance by a large
margin, up to 8% on ROxford and up to 6% on RParis.

Feature fusion for ELM In the local branch, the patch
features Y 2 Rw⇥h⇥D (8) are fused in (9) with the output of
the enhanced locality module (ELM), say, U = ELM(Y ) 2
Rw⇥h⇥D. This happens because the input still has the valu-
able spatial information. Denoting function FUSE by h for

brevity, Eq. (9) is written as

Y 0 = h(Y, U). (A13)

Here we consider a number of alternatives for h:

No fusion (w/o ELM) : h(Y, U) = Y (A14)
No fusion (w/ ELM) : h(Y, U) = U (A15)

Sum : h(Y, U) = Y + U (A16)
Hadamard product : h(Y, U) = Y � U (A17)

Concatenation : h(Y, U) = [Y ;U ] (A18)

Fast normalized [59] : h(Y, U) =
w1Y + w2U

w1 + w2 + ✏
(A19)

Orthogonal [72] : h(yi,ui) = [yi � projui
(yi);ui]

(A20)

Fast normalized fusion is a fusion strategy investigated as
part of BiFPN [59], where h(Y, U) is a linear combination
of Y, U with w1 = relu(v1), w2 = relu(v2) and v1, v2 are
learnable parameters. It has similar effect to normalizing
v1, v2 by softmax but is more efficient.

Orthogonal fusion is similar to DOLG [72] but differs in
that we fuse two 3D tensors while DOLG fuses a 3D tensor
with a vector. By representing Y by a folded sequence of
token embeddings y1, . . . ,yM 2 RD and similarly U by
u1, . . . ,uM 2 RD, we define h(yi,ui) per token as the
Gram-Schmidt orthogonalization of vectors yi,ui, where

proju(y) =
hy,ui
hu,uiu (A21)

is the orthogonal projection of y onto the line spanned by
vector u.

Table A13 shows a comparison of two non-fusion and the
five fusion methods. We first observe that the output U of
ELM alone can be worse than the input Y , while the five
fusion methods mostly outperform the non-fusion variants.
Hence, Y and U contain complementary information and
fusion is beneficial. Of the fusion methods, the Hadamard
product, fast normalized and orthogonal are the most effec-
tive, but there is no clear winner and differences are small.
We choose orthogonal fusion as default.

A.5. More visualizations

Figure A6 provides t-SNE visualization of embeddings of
RParis [50] by different models trained on SfM-120k [52].
It is clear that the class distribution of positive images under
hard protocol are more overlapping than easy. Medium, be-
ing the union of easy and hard, is more populated but classes
are better separated than in hard. Vision transformers clearly
separate classes better than Resnet101, especially under hard
protocol. The difference between our DToP-R50+ViT-B and
the baseline hybrid model R50+ViT-B is small.
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Figure A6: Visualization of revisited Paris (RParis or RPar) evaluation
set under easy, medium and hard protocols [50] (in rows) using t-SNE on
output embeddings (12) obtained by different models (in columns) fine-
tuned on SfM-120k [52]. For each protocol, positive images are colored by
query group label and negative are gray. The set of medium positives is the
union of easy and hard positives.


