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Figure 1. Performance of PINER on a random test sample against
different values of the hyperparameter of prior regularization (α)

Figure 2. Increase in physical consistency (measurement) loss
against different values of the hyperparameter of prior regulariza-
tion (α) with a fixed number of iterations. Here we use the iteration
number of the early stopping point when α = 0

6. Appendix

6.1. Discussion about Hyperparameter Sensitivity

Prior consistency (α). We conduct experiments in Sec.4
by comparing the performance of PINER (no-reg) with

Figure 3. the rate of change d curve for a random test sample for
different values of sliding window size k (in number of iterations).

Figure 4. Performance of PINER (input only) on a random test
sample v.s. different values of sliding window size (k)

other variants. We observe that there is only marginal
improvement (< 0.2db) in performance by adding the
prior-consistency term compared to PINER (no-reg).
This observation also implies that the implicit neural repre-
sentation network [2] may contain internal prior knowledge



or implicit regularization so that it can find a good-quality
reconstruction by early stopping without any external regu-
larization given a noisy measurement. The performance of
PINER (no-reg) on LDCT dataset demonstrated in Table. 1
of this Appendix further solidifies this finding. We con-
duct further experiments by altering the magnitude of this
term. Fig. 1 demonstrates that the performance changes lit-
tle when altering the magnitude of α. Fig. 2 demonstrates
the increase of physical consistency loss against α at the
100th iteration for a randomly selected test sample. We
observe that when the physical consistency loss increases
slightly (less than 30 percent), the reconstruction perfor-
mance does not change significantly.

Length of the sliding window (k). In all of our experi-
ments, we take a snapshot of a representation per 20 epochs
over the total 1000 epochs for memory efficiency and data
privacy concerns. Hence, if k = 140, it means that the slid-
ing window contains 7 representation images, which corre-
sponds to a length of 7 in Sec.4. Fig. 3 demonstrates the
d curve for a randomly selected test sample under differ-
ent k values (100,120,140,160,180). We observe that the
shape of d curve is invariant to different choices of k. All
of these curves achieve a minimum early and then increase
and oscillate. We also plot the performance of PINER (in-
put only) on different values of k for that specific sample
in Fig. 4. We do not observe significant difference in per-
formance for different k values. These observations imply
that the performance of PINER is insensitive to different
k values when there are small but observable differences
between representation images at the end and the begin-
ning of the sliding window. Generally speaking, a smaller
k captures local changes better, while a larger k captures the
overall trend better.

Learning rates (λ1, λ2). The learning rate λ2 for
physical-consistency optimization is set to be 1e-5 follow-
ing the setting in [1]. A much larger learning rate for this
step may not be suitable for preserving the embedded prior
information. The setting of learning rate λ1 for the input-
adaptation stage is based on the idea that we would not like
to achieve a high fitting accuracy in the early iterations so
that we can have a granular collection of representations.
We decrease the learning rate until we cannot achieve a
PSNR of 40db in the last 100 iterations. For simplicity we
set the learning rate to be 5e-5 for LDCT dataset, and 3e-5
for LIDC dataset.

6.2. Additional Experimental Results and Figures

We included the results for ablation study on the LDCT
dataset (tested on Gaussian noise) and the detailed perfor-
mance of UNet+ on each organ site of the LDCT dataset
(tested on Poisson-Gaussian noise) in Table. 1. We also in-
clude the ground truth test-time noise level distribution for
“OOD noise detected” and “OOD noise not detected” test

Figure 5. Histograms of ground truth noise distribution for OOD
noise detected and OOD noise not detected test-time samples with
UNet and UNet+ pretrained. (UNet is trained on noise level
0.0001 and UNet+ is trained on noise levels [0,0.0025])

samples in Fig. 5 for UNet and UNet+ (trained on more
noisy data) on both datasets. We observe that in all sce-
narios, most samples with noise levels in the lower end are
not detected as containing OOD noise, and most samples
with the noise levels in the higher end are detected as con-
taining OOD noise. We also observe that for UNet+, that
distribution is very different from UNet on both datasets,
with much more test-time samples with noise level close to
the augmented training set for UNet+ not detected as con-
taining OOD noise. All these observations highlight that
PINER is able to detect test-time samples that contain OOD
noise, and construct an adapted input accordingly.

6.3. Visualization of Reconstructions by Different
Methods

We provide several additional visualization of recon-
struction results on the LDCT dataset and the LIDC dataset
in Figs. 6- 9. The critical image structure region is anno-
tated in red and zoomed in. We can find that PINER can
reconstruct fine details of images accurately while being a
little blurry when the noise level is very high. In contrast,
RnR can provide smooth and sharp images, but the details
are often inaccurate.

6.4. Network Architecture of Implicit Neural Rep-
resentation

We follow [1]’s approach for the INR network architec-
ture. We construct an 8-layer MLP network with a width of
256 neural nodes f, where each fully-connected layer is fol-
lowed by the periodic activation function [2] except for the
last layer. The Fourier feature embedding [3] size is 256,
where the hyperparameter for the embedding scale (stan-
dard deviation of the Fourier coefficient’s Gaussian distri-



Table 1. Performance of adaptation algorithms on the LDCT dataset with different pretrained models

Model Adaptation Method Abdominal Head Chest
PSNR SSIM PSNR SSIM PSNR SSIM

UNet

None 28.67 0.799 26.58 0.707 26.68 0.771
PINER (input only) 29.89 0.848 27.81 0.752 28.27 0.812
PINER (physics only) 32.81 0.931 32.62 0.921 29.84 0.883
PINER (no-reg) 32.97 0.933 33.01 0.925 29.92 0.870
PINER (full) 33.06 0.936 33.10 0.931 30.11 0.892

DnCNN

None 29.36 0.809 29.58 0.832 28.55 0.831
PINER (input only) 31.18 0.885 30.19 0.841 29.48 0.870
PINER (physics only) 31.20 0.875 32.33 0.918 29.73 0.868
PINER (no-reg) 34.15 0.951 34.31 0.951 31.20 0.913
PINER (full) 34.22 0.948 34.40 0.947 31.30 0.912

UNet+

None 31.28 0.888 30.20 0.857 28.68 0.848
PICCS 32.35 0.927 32.15 0.924 29.42 0.877
RnR 31.79 0.940 31.40 0.947 29.22 0.894
PINER (input only) 31.60 0.899 30.28 0.859 28.93 0.862
PINER (full) 33.63 0.946 33.46 0.944 30.23 0.898

bution) is set as 4 for CT reconstruction. We use the same
network architecture for every experiment.
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Figure 6. Reconstructions on LDCT dataset

Figure 7. Reconstructions on LIDC dataset



Figure 8. Reconstructions on LDCT dataset

Figure 9. Reconstructions on LIDC dataset


