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1. Implementation details

In this section, we provide additional implementation de-
tails for DELS-MVS, which we evaluated using an RTX
3090 GPU.

The feature volumes extracted from the reference and
source image, depicted in Figure 1 of the main manuscript,
are computed using the multi-resolution feature network
architecture proposed in [2, 4], extended with deformable
convolutions as employed in [6]. Given an input resolution,
the employed feature network yields output feature maps Fh

for the resolution levels h = {0, 1, 2} representing full, half
and quarter resolution, respectively. In terms of the num-
ber of feature channels fh used in each resolution level, we
adopt the settings used in [2, 8] and utilize f0 = 8, f1 = 16
and f2 = 32.

DELS-MVS operates on three resolution levels as well.
In particular, at the resolution level h, DELS-MVS employs
an ER-Net, introduced in Sec. 3.3 of the main manuscript,
and feeds it with Fh. During training, the three ER-Nets at
the three different resolutions are trained sequentially with
no gradient flow between them, therefore we couple each
ER-Net with its own feature network. Within this setup, the
ER-Net at resolution h is fed with the feature volume Fh

from its own feature network. Finally, the network parame-
ter settings of C-Net are reported in Table 1.

Given a pixel location pR = (x, y) ∈ R2 in the reference
image, the objective of our Deep Epipolar Line Search, de-
scribed in Sec. 3.2 of the main manuscript, is the retrieval
of its projection pn ∈ R2 along the corresponding epipolar
line of the source image Sn. Once pn has been computed,
the desired depth Dn(x, y) can be obtained by leveraging
the known transformation between the reference and source
image pixel domains TR→Sn = [R̄|t̄ ] where R̄ ∈ R3×3

and t̄ ∈ R3 denote the rotational and translational compo-
nents. For the sake of simplicity, we denote Dn(x, y) as Dn

parameters

op. name kernel activation channels input

CONV2D1 3× 3 leaky ReLU fC · 2 C̃n

CONV2D2 3× 3 leaky ReLU fC · 2 CONV2D1
CONV2D3 3× 3 leaky ReLU fC CONV2D2

CONV2D4 3× 3 leaky ReLU fC
2 CONV2D3

Cn 3× 3 sigmoid 1 CONV2D4

Table 1. C-Net network parameter settings. We adopt fC = 32.

in the following derivations. In the following, the subscript
H denotes homogeneous coordinates and (·)j=x,y,z denotes
the j component of a vector. The relation between the ref-
erence image pixel pR and its projection pn is captured by
the following two equations:

(R̄pRH)x · Dn + t̄x = pnx · dn (1)

(R̄pRH)y · Dn + t̄y = pny · dn (2)

Eq. (2) provides the following expression for dn:

dn =
(R̄pRH)y · Dn + t̄y

pny
(3)

Substituting Eq. (3) in Eq. (1) and solving for Dn yields the
desired depth:

Dn =
t̄yp

n
x − t̄xp

n
y

(R̄pRH)xpny − (R̄pRH)ypnx
(4)

In Table 2, we show a runtime and memory comparison
with other methods on the Tanks and Temples [3] bench-
mark using N = 6 source images with an input image res-
olution of 1920 × 1056. We additionally provide the in-
put downscale factor: this indicates whether the method is
working, internally, on a downscaled version of the input,



as this results in a lower resolution output. This is also the
case for [9], whose output is the result of an up-scaling from
half resolution. It can be seen that we achieve competitive
memory consumption among the considered methods, es-
pecially taking into account that we work at full resolution,
like [2, 8, 10].

method runtime (s) mem. (GB) input DS.

PatchMatchNet [9] 0.30 3.9 0.5
CVP-MVSNet [10] 1.64 9.4 1.0
IB-MVS [8] 7.17 7.4 1.0
CasMVSNet [2] 0.70 9.6 1.0
ours (DELS-MVS) 2.87 6.2 1.0

Table 2. Runtime and memory comparison on Tanks and Tem-
ples [3], with resolution 1920× 1056 and N = 6 source views.

2. Additional visualizations
In this Section we provide additional visual results for

DELS-MVS.
In Figure 3, we compare the point cloud reconstructions

of the ETH3D [7] sequence Meadow provided by DELS-
MVS and the state-of-the-art deep-learning-based methods
EPP-MVSNet [5] and PatchMatchNet [9]. It can be ob-
served that DELS-MVS reconstruction is more complete
and exhibits less noise. In Figure 1, we consider a refer-
ence image in the ETH3D [7] sequence Statue and vi-
sualize both the depth and confidence maps estimated us-
ing two source images and the final fused depth and confi-
dence maps. It can be observed that the confidence maps
Cn of each source image exhibit a low confidence, denoted
by dark areas, in those regions of the reference image that
are occluded in the source. This is crucial, as the confidence
maps are employed in our robust fusion step, described in
Sec. 3.4 of the main manuscript, to fuse the reliable areas
of each depth map into a single one. The result of the fusion
is shown in the third row of the same figure, where it can be
observed that the reliable areas of the depth maps estimated
using the two source images, denoted by white areas in the
confidence maps, complement each other. In Figure 4, we
consider a reference image from one of the DTU [1] se-
quences and sketch the evolution of the epipolar residual
maps En estimated by DELS-MVS over its iterations and
scales, for three source images Sn. Additionally, we visual-
ize the final depth maps Dn obtained from the three source
images as well as their fusion D.

Finally, we provide additional DELS-MVS point cloud
reconstructions for DTU [1] and Tanks and Temples [3] in
Figure 2. It can be observed that the reconstructions exhibit
high completeness and low noise.
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Figure 1. Depth maps estimated by DELS-MVS for the ETH3D
high resolution [7] sequence Statue using N = 2 source im-
ages. Each column of the two top rows hosts, from left to right,
one of the considered source images Sn, its estimated depth map
Dn and confidence map Cn. The third row hosts, from left to
right, the considered reference image, its fused depth map D and
confidence map C.

Figure 2. DELS-MVS point cloud reconstructions of sequences
from DTU [1] (top) and Tanks and Temples [3] (bottom).
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F-score: 69.34 49.77 53.77

COMP: 69.60 41.15 45.27

ACC: 69.09 62.97 66.19
Figure 3. Point cloud reconstructions of the ETH3D [7] sequence Meadow provided by DELS-MVS (left column), EPP-MVSNet [5]
(central column) and PatchMatchNet [9] (right column). The top row depicts the colored point clouds. The central row depicts the point
cloud completeness: green points are complete, red are incomplete. The bottom row depicts the point cloud accuracy: green points are
accurate, red are inaccurate and blue not observed. The depicted completeness and accuracy consider a 2cm error threshold.
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Figure 4. DELS-MVS results for multiple iterations on a DTU [1] sequence, setting the number of utilized source images to N = 3. The
top row depicts the three considered source images Sn. The rows one to five depict the predicted epipolar residual maps En at different
iterations i of the three resolution levels h. Positive residual values are in blue, negative ones are in red. The three final epipolar residual
maps at row five are converted into the three depth maps Dn, depicted at row six. Finally, the bottom row depicts the considered reference
image R and its final depth map D obtained by fusing the three depth maps Dn.
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