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A. Overview
In this supplementary draft, we provide additional abla-

tion studies and experimental details. The remaining of this
supplementary draft is organized as follows. The mathe-
matical details of the patch selection operation are provided
in Sec. B. In Sec. C we detail the architectural and train-
ing details, e.g., parameters choices. Additional ablations
are detailed in Sec. D . A detailed derivation of the compu-
tational cost is presented in Sec. E. We discuss, in Sec. F,
some properties of ScoreMix and present some examples of
our proposed ScoreMix augmentation. Finally, the suitabil-
ity of ScoreNet to learn from uncurated data is evaluated in
Sec. G.

B. Differentiable Patch Selection
We now get down to the nuts and bolts of the differen-

tiable patch selection module. For that purpose, let’s as-
sume that an input image, x ∈ RC×H×W , is tiled in a reg-
ular grid of N patches (of dimension C × P × P ), conve-
niently stored in a tensor P ∈ RN×C×P×P . Provided an
index matrix Y ∈ {0, 1}N×K encoding the one-hot indices
of K patches, the extraction operation, can be written as:

X = YT P (1)

where X ∈ RK×C×P×P stores the selected patches. In a
machine learning context it is desirable that the patch selec-
tion process is data driven, and hence based on a learnable
criterion, well reflected by a score, Ppatch ∈ RN , which cap-
tures the relevance of each patch for the task at hand. We
therefore seek a differentiable module, T , which returns
the indices, Y∗, of the K patches that maximize this cri-
terion when fed with Ppatch. The standard Top-K operator
is not suitable for this purpose, as it is non-differentiable.
Nonetheless, it has been demonstrated that it could be
equivalently formulated as solving the linear program [7]:

Y∗ = argmax
Y∈C1

=
〈
Y, P̃

〉
(2)

where P̃ ∈ RN×K is obtained by broadcasting Ppatch to
match the dimension of Y, and C1 is the convex hull:

{Y ∈ RN×K
+ :

∑
k

Yn,k ≤ 1 ∀n,
∑
n

Yn,k = 1 ∀k} (3)

which falls under the set of problems to which the per-
turbed optimizers scheme can be applied to obtain a noisy,
but differentiable solution [3]. In fact, for the perturbed op-
timizers framework to be applicable, the solution must be
unique, which is not the case here, as any permutation of
the columns of Y∗ is still a valid solution. To that end, [7]
proposes to use the sorted Top-K operator, whose solution
is unique and can also be formulated as a linear program:

Y∗ = argmax
Y∈C

=
〈
Y, P̃

〉
(4)

where C = C1 ∩ C2 and C2 is:

{Y ∈ RN×K
+ :

∑
i

iYi,k <
∑
j

jYj,k′∀k < k′} (5)

As can be seen in Eq. 5, C2 ensures that the indices, encoded
as one-hot columns of Y, are sorted, namely the smallest
index is stored in the first column and the largest in the last
one.

Under that formalism, the perturbed sorted Top-K oper-
ator is defined as:

Yσ = EN

[
argmax

Y∈C

〈
Y, P̃+ σN

〉]
(6)

and σN ∈ RN×K is a centered Gaussian noise of variance
σ2. In principle, the perturbed optimizers scheme is not lim-
ited to Gaussian noises, but it has the nice property that the
Jacobian of the perturbed maximizer Yσ w.r.t. the learnable
scores, P̃, is well defined and can be efficiently computed:

JP̃Yσ = EN

[
argmax

Y∈C

〈
Y, P̃+ σN

〉
NT /σ

]
(7)

we refer the reader to [1] (Lemma 1.5) for a detailed deriva-
tion of the above Jacobian.



C. Experimental Setup & Datasets

C.1. Networks Architectures

ScoreNet. The proposed ScoreNet architecture comprises
two stages: the recommendation and aggregation stages.
The former leverages a modified ViT-Tiny to produces the
semantic distribution. Similarly, the latter relies on an iden-
tical ViT-Tiny to independently embed the selected high-
resolution patches (local fine-grained attention) and on a
transformer encoder to mix the embedded patches (global
coarse-grained attention). The following parameters of the
two identical ViT-Tiny were modified to be tailored for the
task:

• embed dim=96.
• depth=8.
• num heads=4.
• mlp ratio=2.

These modifications were brought to allow for a self-
supervised pre-training with a sufficiently large batch size
(bs ≥ 128), which was reported to be of significant impor-
tance to reach good performance [5]. The parameters of
the transformer encoder implementing the global coarse-
grained attention mechanism are:

• embed dim=96.
• depth=4.
• num heads=4.
• mlp ratio=2.

Overall ScoreNet’s model totals approximately 1.79M pa-
rameters.

SwinTransformer. SwinTransformers [12] relies on hierar-
chical architecture attention mechanism, namely intra- and
inter-window attentions. The patch-merging operation re-
duces the time, and memory cost of SwinTransformers [12]
significantly, which decreases the total number of tokens by
4, while increasing the embedding by 2. The architecture
is modified to accept non-square windows, allowing Swin-
Transformers to process non-square images images. The
resulting parameters are:

• patch size=16.
• input embed dim size=24.
• output embed dim size=192.
• depths=[2, 2, 6, 2].
• num heads=[3, 6, 12, 24].
• window size=(6, 8).
• mlp ratio=4.

Overall the SwinTransformer model totals approximately
1.77M parameters.

TransPath. As described in [18], TransPath’s architecture
leverages a CNN encoder to jointly reduce the input image’s
size, extract relevant features, and tile the image in pre-
embedded patches. Subsequently, a transformer encoder
processes the CNN encoder’s features to capture global in-
teractions. The CNN encoder’s architecture is as follows:

• n convolutions=4.
• n filters=[8, 32, 128, 512].
• kernel sizes=[(3, 3), (3, 3), (3,
3), (3, 3)].

• pooling kernel sizes=[(4, 4), (2,
2), (4, 4), (4, 4)].

• activation=ReLU [10].

A projection convolution is used to match the desired em-
bedding dimension of the transformer encoder. Its parame-
ters are:

• n filters=192.

• kernel sizes=(1, 1).

The parameters of the transformer encoder are:

• embed dim=192.
• depth=4.
• num heads=4.
• mlp ratio=2.

Each transformer block rely on TransPath’s customized
token-aggregating and excitation multi-head self-attention
(MHSA-TAE) [18]. Overall, TransPath’s model totals ap-
proximately 1.93M parameters.

TransMIL. We adopt the original implementation as pro-
vided by the authors [16]. It relies on a ResNet-50 [11]
pre-trained on ImageNet [8] to embed the individual 256×
256 patches. Overall, TransMIL’s model totals approxi-
mately 3.19M parameters (not counting the parameters of
the ResNet-50).

CLAM. The implementation of CLAM follows the code
provided by the authors [13]. It relies on a ResNet-50
[11] pre-trained on ImageNet [8] to embed the individ-
ual 256 × 256 patches. Overall, the variations of CLAM-
(SB/MB)/(S/B) total from 1.32M to 1.46M parameters (not
counting the parameters of the ResNet-50).

C.2. Self-Supervised Pre-training

Modular Pre-training. Our modular architecture allows
for independent self-supervised pre-trainings of the recom-
mendation stage’s ViT and that of the local fine-grained at-
tention mechanism. A two steps pre-training can be ben-
eficial, as it provides the possibility to validate each part



independently. Similarly, one of the modules, typically the
one implementing the fine-grained local attention, can be
trained on an auxiliary annotated dataset or be replaced by
a standard pre-trained model.

The self-supervised pre-training follows the guidelines
of [5]. Apart from the differences in architectures described
in Sec. C.1, minor modifications were made in the projec-
tion head to account for the reduced heterogeneity in our
datasets compared to that in ImageNet [9]. The modifica-
tions are:

• hidden dim=1024.
• bottleneck dim=128.
• out dim=1024.

These modifications are in line with the interpretation of [4]
which considers the last linear layer as a projection on a
set of learnable centroids and that their number should re-
flect the level of diversity present in the dataset. For this
interpretation to hold, it is required that both the last layer’s
input and its weights are normalized, which is the case in
our setup. The remaining parameters, aside from the posi-
tion encoding which is discussed in Sec. D, are set to the
default values (see [5] for details).

End-to-end Pre-training. In some cases, an end-to-end
pre-training of ScoreNet is preferable. For that purpose,
we experimented with two approaches: DINO and a variant
of it for that purpose. The former uses the default values for
all parameters but those of the projection head described
above. On the contrary, the latter benefits from different
augmentations and another pretext task and thereby avoid a
potential pitfall of DINO: encouraging contextual bias [17],
which occurs when the similarity between the representa-
tions of views depicting distinct tissue types is enforced.

In this regard, the set of admissible augmentations are
constrained to those that change the pixels’ values, but not
their locations. Consequently, a given image’s different
views are bounded to bear identical semantic content. A
key aspect of DINO’s strong performance is due to en-
forcing the local-to-global correspondence between the stu-
dent’s local crops and that of the teacher’s global crop. To
mimic that knowledge distillation mechanism, we encour-
age the student, which only processes the most discrimi-
native high-resolution patches, to match the teacher’s rep-
resentation, which on the contrary, is based on all high-
resolution patches. One can observe that this pretext task
enforces local-to-global correspondence while providing a
strong supervisory signal to the student’s scorer, which has
to highlight the most relevant regions for the task to be suc-
cessfully accomplished.

In that setting, ScoreNet’s representation is obtained
by the concatenation of the [CLS] tokens of the global
coarse-grained attention module’s last two transformer

blocks. This representation benefits from global contextual
information through the teacher, which processes the whole
high-resolution image. The projection head’s parameters
are identified as described above.

C.3. Datasets

In addition to the annotated TRoIs from two datasets,
namely BRACS [14] and BACH [2], additional sets of un-
labeled of images are used to pre-train the models and for
various ablations. The sets of unlabeled images are detailed
here.

BRACS. The BRACS dataset encompasses both the anno-
tated TRoIs and the 547 whole-slide images from which
they were extracted. We use the WSIs to create an unla-
beled pre-training set. More precisely, two types of auxil-
iary datasets are extracted from BRACS’s WSIs: tiles set at
40× and low-resolution thumbnails set at 40

s ×, where s is
the down-scaling ratio. The former set is used to pre-train
the local fine-grained attention module, whereas the latter
serves to pre-train the recommendation stag’s scorer. We
experimented with two variants of these paired sets. The
first variant is designed for a version of ScoreNet, where
the dimension of the finely attended regions is Ph = 224,
the recommendation stage processes low-resolution patches
of dimension Pl = 16 and consequently a down-scaling ra-
tio s = 14. The second variant is designed for a version
of ScoreNet, where the dimension of the finely attended
regions is Ph = 128, the recommendation stage processes
low-resolution patches of dimension Pl = 16 and conse-
quently a down-scaling ratio s = 8. The resulting sets con-
tain approximately 150k images (for a fair comparison of
the two versions, see Sec. D).

The last images are extracted from BRACS to conduct
TransPath’s self-supervised pre-training. From the WSIs,
an unlabeled set of approximately 100k images at 40× are
extracted. The images have dimensions 1536×1536, which
is approximately the median dimensions of the annotated
TRoIs.

BACH. Similarly, the BACH dataset comprises an anno-
tated set of TRoIs and the accompanying 40 whole-slide
images. From the WSIs, an unlabeled pre-training set of
approximately 11k images at 20× are extracted. The im-
ages have the exact dimensions as the annotated TRoIs,
1536× 2048.

CAMELYON16. Finally, additional tiles set is extracted
from CAMELYON16, which is, to our knowledge, the only
one with patch-level annotations. This set is used to eval-
uate the pre-training of the fine-grained attention module.
The latter is composed of 10k images at 40×, of dimen-
sions 128× 128 or 224× 224. It is class-balanced, and any
patch which contains tumorous tissue is considered tumour
positive. This set is also used to measure the effectiveness



of the position encoding on the fine-grained attention mod-
ule in Sec. D.

D. Additional Ablations
Down-Scaling Ratio & Dimensions of the Attended Re-
gions. A key component of the proposed pipeline is to
determine the down-scaling ratio, s, and the dimension of
the square patches in low-resolution, Pl × Pl, and in high-
resolution, Ph × Ph. Considering the well-studied nature
of the ViTs scorers, we use the standard patch dimension
Pl = 16 for the patches in low-resolution. It has been
shown that smaller patches (Pl = 8 or Pl = 5) improve
the quality of the learned representations [5], nonetheless
the incurred increase in computational and memory cost
is unsuitable for our application. For the high-resolution
patches, we experiment with two standard patch dimen-
sions: Ph = 128 and Ph = 224. As the self-attention of the
recommendation stage is used as a learnable distribution of
the semantic content, there should exist a 1-to-1 mapping
between the low-resolution patches and the high-resolution
regions that can be extracted. As a consequence, the down-
scaling ratio is fully determined by the dimensions of the
patches: s = Ph/Pl. In our case, it translates to down-
scaling ratio of either s = 8, or s = 14.

To find out which of these two setups is the most suit-
able for our application, we compare the models obtained
by each of them via a weighted k Nearest Neighbours clas-
sifier, which has the advantage of being fast and not requir-
ing any finetuning. In Table 2, we compare the classification
results on the low-resolution ( 40s ×) BRACS dataset. We re-
port the results of both the teacher and the student models
as well as those obtained by a CNN with comparable ca-
pacity and identical pre-training. We do not observe signifi-
cant differences between the two scales. On the other hand,
these differences are much more emphasized when evalu-
ating the same models on the low-resolution ( 20s ×) BACH
dataset (see Table 1). These promising results on the BACH
dataset, despite the mismatched scales, are to be credited to
the local to global views pre-training method [5].

The quality of the fine-grained attention module is as-
sessed with the aforementioned method on the tile CAME-
LYON16 dataset introduced in Sec. C.3, and the hereby ob-
tained results are reported in Table 3. In conclusion, we
observe that the difference is either marginal (Table 2 &
3) or significantly in favor of the setup where s = 8 (Ta-
ble 1) and therefore we choose this setup for the remaining
experiments and architectures. As a side note, the CNN ar-
chitecture performs substantially worth, but it is most likely
due to the fact that the DINO [5] method is biased towards
ViT architectures. Positional Encoding. Without position
encoding (PE), a ViT processes tokens as a set and hence
completely discards the global shape information; there-
fore, position encoding is essential. The typical approach is

to learn a single matrix of absolute and additive position en-
coding jointly during the training phase. This approach suf-
fers from two drawbacks: i) the absolute encoding of each
token’s position implies that a pattern is different at every
location it occurs, which reduces the sample efficiency [15],
and ii) as a consequence of the storage of the position en-
coding in a single matrix, the model treats the input tokens
as a 1D sequence and thus mislays the multi-dimensionality
of the inputs. The latter is not an issue as long as the input
images have the same aspect ratio, as is the case with the
local/global crops strategy of DINO [5]. Nonetheless, and
as depicted in Fig. 1, this approach fails when the model
is fed an image of a different aspect ratio than those used
to train the position encoding. As illustrated in Fig. 1, the
2D sine-cos position encoding does not introduce any arti-
facts when used with images of different resolutions. On the
other hand, any absolute position encoding is not a transla-
tion equivariant operation, an undesired property for pla-
nar images. For these reasons, we experiment with Con-
ditional Position encoding Vision Transformer (CPVT) [6].
This PE is input-dependent and convolution-based; conse-
quently, it is suitable for any input resolution and patch-wise
translation-equivariant. Fig. 2 reveals that the PE of border
tokens is slightly different due to the needed zero-padding.
This finding suggests that the absolute position encoding
can be inferred from zero-paddings [6]. We argue that
CPVT is well suited to be used conjointly with ScoreMix
as the local processing of the token is convenient for de-
tecting local discontinuity caused by the pasting operation,
which is needed to incorporate the added content to the
global representation (see Sec. F). In Table 4 and Table 5,
we evaluate the discriminability of the features obtained by
a pre-training under the DINO framework and with various
position encoding methods. Table 5, which reports results
on the tile CAMELYON16 dataset (see Sec. C.3), does not
provide substantial shreds of evidence in favor of one PE
or the other; we postulate that this lack of significant dif-
ferences is due to the lessened importance of position en-
coding for the tile dataset. Indeed, at 40× and with tiles
of dimension 128 × 128, the available features are mostly
texture-based, and the relative organization of the patches
is less relevant. This claim is well supported by the sub-
stantial differences in performance obtained by distinct PE
when evaluated on the low-resolution BACH and BRACS
datasets (see Table 5). These differences are further exac-
erbated by the fact that images on which performance is
evaluated are either of varied size (BRACS) or at least of a
different dimension than those used during the pre-training
(BACH). Notably, there seems to be a significant perfor-
mance discrepancy between the models using a [CLS] to-
ken (CPVT) and those based on a global average pooling
(CPVT-GAP). Based on these results, we select the CPVT-
GAP approach for the remaining experiments. Note that we



Table 1: A weighted k Nearest Neighbors classifier assesses the learned features’ discriminability (weighted F1-score) on the low-
resolution BACH dataset. The performances of CNN and ViT-based architectures are compared, and similarly for two down-scaling
ratios (s = 8 or s = 14). We use a 4-fold scheme with 75%/25% train/test splits.

ViT CNN

Teacher Student Teacher Student

k s = 14 s = 8 s = 14 s = 8 s = 14 s = 8 s = 14 s = 8
1 71.7 ± 6.4 78.5 ± 6.4 73.6 ± 5.1 77.4 ± 5.1 63.6 ± 5.1 64.4 ± 1.9 63.8 ± 3.2 63.9 ± 2.2
5 71.5 ± 1.7 81.7 ± 3.2 72.8 ± 1.9 81.0 ± 4.0 65.1 ± 3.3 64.7 ± 2.1 64.1 ± 4.6 65.4 ± 2.7
10 71.9 ± 2.4 77.8 ± 2.8 72.5 ± 2.5 77.9 ± 3.4 62.0 ± 3.8 58.9 ± 2.9 61.5 ± 5.8 61.1 ± 2.5
20 71.3 ± 4.0 76.3 ± 3.0 72.5 ± 3.0 76.5 ± 4.0 64.0 ± 6.7 55.5 ± 1.8 61.0 ± 9.2 55.4 ± 2.4
50 71.2 ± 4.0 74.7 ± 4.7 70.9 ± 3.3 74.3 ± 5.7 59.3 ± 5.3 56.1 ± 3.2 58.1 ± 6.2 54.6 ± 3.9
100 71.7 ± 4.1 74.0 ± 5.5 71.4 ± 3.8 73.6 ± 5.9 57.4 ± 3.4 50.6 ± 5.1 56.2 ± 3.0 48.7 ± 4.7
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Figure 1: The cosine similarity of a learnable and 2D sine-cos positional encoding is compared. The learnable positional encoding
introduces undesirable artifacts when the aspect ratio changes (Learnable (15×13)).

Table 2: A weighted k Nearest Neighbors classifier assesses
the learned features’ discriminability (weighted F1-score) on
the low-resolution BRACS dataset. The performances of CNN
and ViT-based architectures are compared, and similarly for two
down-scaling ratios (s = 8 or s = 14). The k-NN classifier is
trained on the merged train/valid set and evaluated on the test set
(see [14]), hence the high performances.

ViT CNN

Teacher Student Teacher Student

k s = 14 s = 8 s = 14 s = 8 s = 14 s = 8 s = 14 s = 8
1 52.5 54.3 51.6 55.0 45.2 45.5 45.4 44.7
5 55.2 56.1 55.4 55.8 47.1 47.6 46.6 46.2
10 57.2 56.4 57.5 56.7 49.3 46.5 50.5 45.8
20 56.9 58.0 58.1 57.6 47.1 47.6 45.9 47.0
50 56.2 57.5 55.7 56.9 41.2 44.9 40.6 44.9
100 53.9 54.0 54.3 53.7 40.3 43.5 40.1 44.2

referred to [CLS] token throughout this text when referring
to a GAP token. Additionally, we have slightly modified
the method to be able to extract one self-attention map per
transformer head: instead of performing the GAP operation
after the very last layer of the transformer encoder, we do

it after the (L − 1)th layer and concatenate the resulting
token to the sequence, thereby producing a pseudo [CLS]
token. Similarly, when m pseudo [CLS] tokens are used,
this operation is performed after the (L−m)th layer.
Selecting the Number of Finely Attended Regions. The
effect of the number of selected regions is depicted in Table
6. One can observe that it does not appear as the most de-
termining factor, particularly that the results are not mono-
tonically increasing, which is unexpected. There are two
potential explanations for this behavior. The first is due to
the heterogeneity of the BRACS dataset. More precisely, it
encompasses images containing less than 50 patches, which
implies that the image must first be resized, potentially
harming the predictions. The second explanation is that
the model used for this ablation is a ScoreNet/4/1 variant,
which by design relies less on the high-resolution images
than its ScoreNet/4/3 counterpart. The respective proper-
ties of these two variants are subject to Sec. D.1.

D.1. ScoreNet Under the Magnifying Glass

Just a Glorified Low-resolution ViT? We explore the us-
age of high-resolution images for predictions. For that



Table 3: A weighted k Nearest Neighbors classifier assesses the discriminability (weighted F1-score) of the learned features on the
tile CAMELYON16 dataset (see Sec. C.3). The performances of CNN and ViT-based architectures is compared, and similarly for two
tile dimensions (128 × 128 and 224 × 224) corresponding to down-scaling ratios of s = 8 and s = 14, respectively. A 4-fold approach
with 75%/25% train/test splits is used.

ViT CNN

Teacher Student Teacher Student

k s = 14 s = 8 s = 14 s = 8 s = 14 s = 8 s = 14 s = 8
1 89.7 ± 0.6 89.1 ± 0.4 89.6 ± 0.6 89.1 ± 0.4 87.0 ± 0.8 85.8 ± 1.1 87.2 ± 0.9 85.8 ± 0.8
5 91.7 ± 0.4 91.1 ± 0.5 91.6 ± 0.3 91.2 ± 0.6 89.9 ± 1.7 88.8 ± 1.8 89.8 ± 1.7 88.7 ± 1.7
10 91.9 ± 0.5 91.4 ± 0.5 91.9 ± 0.5 91.5 ± 0.4 90.3 ± 1.0 89.0 ± 0.5 90.2 ± 1.1 89.0 ± 0.6
20 91.6 ± 0.6 91.2 ± 0.3 91.6 ± 0.4 91.2 ± 0.4 90.0 ± 1.1 89.0 ± 0.5 89.8 ± 1.1 88.9 ± 0.6
50 91.4 ± 0.9 90.7 ± 0.6 91.3 ± 1.0 90.7 ± 0.5 88.8 ± 1.1 88.6 ± 0.8 88.9 ± 1.1 88.5 ± 0.8
100 90.9 ± 1.1 90.1 ± 0.6 90.9 ± 1.1 90.0 ± 0.5 88.2 ± 1.0 87.6 ± 1.0 88.1 ± 1.0 87.6 ± 0.9
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Figure 2: The conditional position encoding [6] of a non-squared input image is represented. The PE is image-dependent and captures
the local interactions between tokens.

purpose, at test time, we mask 75% of the selected high-
resolution regions and report the obtained results in Table 7.
As expected, we observe that the ScoreNet/4/3 variant
uses the high-resolution content more. Furthermore, these
results shed light on how the high-resolution information is
not equally relevant for each class. An interesting observa-
tion is that for each variant of ScoreNet, the higher the per-
formance of a given model is, the more it is affected by the
removal of the high-resolution information (see Table 8).

Table 8: The performance drop incurred by the high-
resolution masking operation of individual models is moni-
tored. The models that rely the most on the high-resolution con-
tent are the ones that perform the best.

ScoreNet/4/1 ScoreNet/4/3

63.3 −0.6−−−→ 62.7 ± 0.2 63.3 −2.8−−−→ 60.5 ± 0.1
63.8 −2.2−−−→ 61.6 ± 0.1 64.8 −5.2−−−→ 59.6 ± 0.3
64.9 −2.2−−−→ 62.7 ± 0.3 65.0 −6.4−−−→ 58.6 ± 0.3

Despite that, we expected a more considerable drop in
performance from this masking operation, which raises the
question; is ScoreNet nothing but a glorified low-resolution
ViT? To answer that question, we train the same ViT as the
one used in the recommendation stage and the same setting,
but basing the predictions on the scorer’s [CLS] tokens and
hence without the feedback from the high-resolution stage.
Table 9 clearly shows a gap of almost 10% compared to



Table 4: A weighted k Nearest Neighbors classifier assesses the learned features’ discriminability (weighted F1-score) on the
low-resolution BACH and BRACS datasets. A fixed and absolute PE (2D sine-cos)’s performances are compared to a learnable and
conditional PE (CPVT and CPVT-GAP). The k-NN classifier is trained on the merged train/valid set and evaluated on the test set (BRACS),
and a 4-fold approach with 75%/25% train/test splits is used for BACH dataset.

BACH BRACS

2D sine-cos CPVT CPVT-GAP 2D sine-cos CPVT CPVT-GAP

k Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student
1 76.0 ± 3.4 75.0 ± 4.0 76.6 ± 2.9 77.7 ± 2.0 78.5 ± 6.4 77.4 ± 5.1 42.2 42.3 49.6 49.2 54.3 55.0
5 74.6 ± 4.2 75.6 ± 4.2 76.8 ± 3.0 76.3 ± 3.7 81.7 ± 3.2 81.0 ± 4.0 45.3 45.7 53.3 53.2 56.1 55.8
10 76.3 ± 4.1 75.6 ± 4.6 76.3 ± 5.0 76.0 ± 5.2 77.8 ± 2.8 77.9 ± 3.4 47.2 46.3 54.3 54.5 56.4 56.7
20 73.9 ± 3.5 73.9 ± 3.5 75.7 ± 5.3 72.9 ± 5.8 76.3 ± 3.0 76.5 ± 4.0 48.2 47.6 53.3 51.5 58.0 57.6
50 73.5 ± 4.3 73.0 ± 4.1 74.2 ± 5.1 73.4 ± 6.5 74.7 ± 4.7 74.3 ± 5.7 47.0 47.3 50.8 49.7 57.5 56.9
100 72.8 ± 3.7 73.0 ± 3.1 73.6 ± 5.8 71.4 ± 7.4 74.0 ± 5.5 73.6 ± 5.9 45.5 45.0 48.4 48.1 54.0 53.7

Table 5: A weighted k Nearest Neighbors classifier assesses the
discriminability (weighted F1-score) of the learned features on
the tile CAMELYON16 dataset (see Sec. C.3). A fixed and abso-
lute PE (2D sine-cos)’s performances are compared to a learnable
and conditional PE (CPVT and CPVT-GAP). A 4-fold approach
with 75%/25% train/test splits is used.

2D sine-cos CPVT CPVT-GAP

k Teacher Student Teacher Student Teacher Student
1 88.2 ± 0.9 88.4 ± 0.6 88.8 ± 0.4 88.8 ± 0.4 89.1 ± 0.4 89.1 ± 0.4
5 91.1 ± 0.9 91.0 ± 1.0 90.9 ± 0.5 90.9 ± 0.6 91.1 ± 0.5 91.2 ± 0.6
10 91.2 ± 0.7 91.2 ± 0.5 91.1 ± 0.4 91.1 ± 0.3 91.4 ± 0.5 91.5 ± 0.4
20 91.1 ± 0.7 91.1 ± 0.6 91.3 ± 0.5 91.4 ± 0.5 91.2 ± 0.3 91.2 ± 0.4
50 90.5 ± 0.7 90.6 ± 0.7 90.8 ± 0.6 90.8 ± 0.5 90.7 ± 0.6 90.7 ± 0.5
100 90.2 ± 1.8 90.2 ± 0.8 90.2 ± 0.6 90.2 ± 0.6 90.1 ± 0.6 90.0 ± 0.5

ScoreNet’s results and, more interestingly, a gap of more
than 5% when compared to the same ViT, but trained with
the high-resolution feedback. The above results indicate
that high-resolution information distillation occurs dur-
ing the training of ScoreNet.

E. Computational Cost
Vision transformers heavily rely on the attention mecha-

nism to learn a high-level representation from low-level re-
gions. The underlying assumption is that the different sub-
regions of the image are not equally important for the over-
all representation. Despite this key observation, the com-
putation cost dedicated to a sub-region is independent of its
contribution to the high-level representation, which is in-
efficient and undesirable. Our ScoreNet attention mecha-
nism overcomes this drawback by learning to attribute more
computational resources to regions of high interest. Let us
consider a high-resolution input image xh ∈ RC×H×W , a
low-resolution version of the image xl ∈ RC×h×w is ob-
tained by applying a down-scaling factor s, as h = H/s
and w = W/s. The low-resolution image is fed to a scorer
model (recommendation stage), which recommends the re-
gions where to apply fine-grained attention. If this oper-
ation is implemented by a ViT, its computational cost is

O
((

h
Pl

· w
Pl

)2
)

with Pl is the dimension of the patches in

low-resolution. Using a ViT as the scorer model, there is
a one-to-one mapping between the low-resolution patches
and the regions the model can process with fine-grained at-
tention; as a consequence, the dimension of the regions is
Ph = s · Pl. Attending to such regions with a patch size,

Pa, has a computational cost of O
((

Ph

Pa
· Ph

Pa

)2
)

and the

model processes k of them, hence O
(
k ·

(
Ph

Pa
· Ph

Pa

)2
)

. Fi-

nally, a coarse attention mechanism is applied to endow
the locally attended regions with contextual information.
This final step costs O

(
k2

)
. On the other hand, a vanilla

ViT would attend uniformly across the whole image with

a cost of O
((

H
Pa

· W
Pa

)2
)

. Importantly, we observe that

only the recommendation stage’s cost depends on the input
size; consequently, if this step is implemented as a ViT and
with a down-scaling ratio s ∈ [8, 14], the asymptotic cost is
reduced by approximately two orders of magnitude, as we
typically used Pa = Pl in practice. At last, one can observe
that the asymptotic cost can be made linear w.r.t. the input
dimension by adopting a convolution-based architecture for
the recommendation stage.

F. ScoreMix Investigation & Examples

The underlying assumption of the “cut-and-paste”-based
augmentation methods is that the trained model can assimi-
late the pasted region to the representation of the image it is
pasted in. In the case of ScoreNet, it translates to attending
to the pasted area in a low or high-resolution image. Fig. 3
depicts an example of ScoreNet being able to detect and
localize the pasted regions even when it is small and hard
to distinguish. We further observe that a local change in
the image directly affects the global representations as the
representation of each token is adapted to accommodate the
local change in information. This behavior would typically



Table 6: The number of finely attended regions is selected by independently training our pipeline 5 times on 10% of the BRACS dataset
with a varying number of proposal regions. The number of training epochs is fixed and is the same for all experiments. The models are
trained with standard data augmentation methods, i.e., none of ScoreMix, SaliencyMix, or CutMix.

# Regions Normal Benign UDH ADH FEA DCIS Invasive Weighted F1
k = 5 53.7 ± 5.2 44.0 ± 5.1 29.7 ± 5.3 28.8 ± 6.8 69.3 ± 4.2 56.9 ± 6.5 86.9 ± 3.2 54.2 ± 1.8
k = 10 52.1 ± 6.2 44.0 ± 3.9 31.0 ± 5.3 28.6 ± 4.3 69.8 ± 3.6 56.4 ± 3.9 85.9 ± 1.4 54.0 ± 0.8
k = 20 52.2 ± 3.4 42.2 ± 5.6 29.6 ± 7.5 31.9 ± 5.3 71.9 ± 2.3 57.5 ± 3.6 86.9 ± 2.5 54.7 ± 0.8
k = 50 51.5 ± 5.4 42.8 ± 4.7 30.0 ± 6.8 25.9 ± 7.1 70.5 ± 4.0 55.8 ± 5.2 85.7 ± 0.9 53.3 ± 2.5

Table 7: At test time, 75% of the selected high-resolution regions are randomly masked. ScoreNet/4/1 and ScoreNet/4/3 do not
equally rely on the high-resolution content.

Masking Normal Benign UDH ADH FEA DCIS Invasive Weighted F1
ScoreNet/4/1 64.6 ± 2.2 52.6 ± 2.8 48.4 ± 2.2 47.4 ± 2.4 77.9 ± 0.7 59.3 ± 1.1 90.6 ± 1.5 64.1 ± 0.7
Masked ScoreNet/4/1 61.1 ± 2.7 50.8 ± 1.4 45.9 ± 2.2 41.0 ± 3.5 78.8 ± 0.5 59.9 ± 3.3 90.6 ± 1.1 62.4 ± 0.6
ScoreNet/4/3 64.3 ± 1.5 54.0 ± 2.2 45.3 ± 3.4 46.7 ± 1.0 78.1 ± 2.8 62.9 ± 2.0 91.0 ± 1.4 64.4 ± 0.9
Masked ScoreNet/4/3 64.9 ± 2.4 51.7 ± 0.5 44.4 ± 4.0 22.0 ± 6.2 77.6 ± 1.0 60.8 ± 1.6 87.2 ± 1.3 59.6 ± 0.7

not be observed in a CNN-based architecture until the very
last layers. Fig. 3 further highlights the ability of ScoreMix
to treat images of different dimensions and aspect ratios.

G. Learning From Uncurated Data.

We gauge the ability of ScoreNet to learn from unla-
beled data on the BACH dataset [2], which encompasses
both a small set of 400 annotated TRoIs images, and the
WSIs containing the aforementioned TRoIs. Our model
is first pre-trained using DINO’s self-supervised learning
scheme [5] on an unlabeled set of ≈ 11k images extracted
from WSIs and then is evaluated on the labeled image set
using standard protocols, namely linear probing and k-NN
(see Table 10). We also report the non-empty cluster’s pu-
rity for the clusters learned by DINO. This metric indicates
the quality of a cluster containing samples from a single
class. Learning from large uncurated images is particularly
challenging, as the increased receptive field allows for the
representation of more complex tissue interactions. This
further deviates from the discriminative pretext task’s as-
sumption that the images represent a single centered object.
Since the DINO method enforces a local-to-global corre-
spondence between large and smaller image crops, it may
enforce similarity between different tissue types. For that
purpose, we modify DINO’s pretext task so that the student
network only processes the highly discriminative patches to
match the teacher’s representation, allowing the processing
of all the high-resolution patches. To ensure that the pre-
text task does not encourage contextual biases [17], we only
employ augmentations that change the image pixels’ values,
but not their locations, such that the semantic content of the
two augmented views is identical. As can be observed in
Table 10, this proposed strategy yields significant improve-
ments compared to other baselines.

Table 10: Comparison with the prior art for learning capabil-
ities from uncurated data on the BACH dataset using DINO’s
pre-training. A comparison results between the effectiveness of
DINO’s standard pretext task (ScoreNet) and the proposed unbi-
ased pretext task (ScoreNet†) are also reported.

ScoreNet† ScoreNet TransPath [18] SwinTransformer [12]
k-NN 73.7 ± 1.7 65.0 ± 3.7 65.2 ± 1.4 63.7 ± 4.1
Lin. eval 73.0 ± 2.9 66.0 ± 2.6 64.2 ± 4.0 62.5 ± 1.7
Purity 78.3 ± 23.9 76.4 ± 24.9 74.0 ± 23.3 71.8 ± 23.9



Table 9: The ViT network of recommendation stage is trained without receiving any feedback from the high-resolution-based
predictions. Its features discriminability is significantly worth than that of the same model but trained jointly with the high-resolution
stage.

Model Normal Benign UDH ADH FEA DCIS Invasive Weighted F1
ViT 53.3 ± 2.8 42.8 ± 1.9 37.1 ± 2.9 32.4 ± 2.4 77.3 ± 0.2 51.2 ± 1.3 85.0 ± 1.8 55.5 ± 0.1
Lin. scorer’s [CLS] 57.5 ± 4.2 48.8 ± 5.5 42.7 ± 3.5 42.7 ± 7.4 74.3 ± 5.2 60.5 ± 2.4 90.6 ± 0.2 60.9 ± 3.1
ScoreNet/4/1 64.6 ± 2.2 52.6 ± 2.8 48.4 ± 2.2 47.4 ± 2.4 77.9 ± 0.7 59.3 ± 1.1 90.6 ± 1.5 64.1 ± 0.7
ScoreNet/4/3 64.3 ± 1.5 54.0 ± 2.2 45.3 ± 3.4 46.7 ± 1.0 78.1 ± 2.8 62.9 ± 2.0 91.0 ± 1.4 64.4 ± 0.9

Figure 3: The learned semantic distribution can detect and localize the newly pasted content. The green box highlights the region
pasted from the cut image to the paste image. The blue box represents the region where the new content is pasted. The yellow box
highlights the modified region in the mixed image. T represents the scorer network of ScoreNet.
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