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1 Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
2 IDEAS NCBR, Warsaw, Poland

{lukasz.struski;marek.smieja;jacek.tabor;bartosz.zielinski}@uj.edu.pl
{tomasz.danel}@doctoral.uj.edu.pl

A. SONGs visualization

In this section, we provide the visualization of a SONG
trained on MNIST where the nodes are represented by the
learned filters and the “average” image passing through those
nodes (see Figure 1). Moreover, we provide additional ex-
amples of the graph structures obtained by training SONG
on the MNIST and CIFAR10 datasets (see Figures 2 and 3)
together with the consecutive steps of the Markov process
(see Figures 4, 5, 6, and 7).

Finally, we analyze the relationship between BCE loss
and the probability of back and cross edges in the successive
epochs of the training. We present the mean over multiple
models and all test samples (as each test sample x has its
graph represented by matrix Px). The number of back and
cross edges is obtained in the following way. We first cal-
culate all paths from the root with a probability higher than
a particular threshold 0.0001. Then we create a standard
binary directed graph that contains all nodes and edges from
those paths. Finally, we run the DFS algorithm for this graph
(starting from the root) to obtain backed and cross edges.

B. Theoretical analysis

Let us consider SONG as the probabilistic model over
trajectories. A trajectory of length N , starting at the root
of SBDG G, is defined as T = (uit)t=1..N with binary
decision dt ∈ {0, 1}, it ∈ I , where I denotes the set of
node indexes. Thus, our trajectory starts at the root (i0 = 0)
and successively passes through nodes uit1

, . . . , uitN
. The

position of trajectory after time t is defined as T (t) = uit

and the probability of trajectory T is defined as

prob((T ;G)) =

N∏
t=1

(σdt
it−1

·mdt
itit−1

).

Then the probability of reaching leaf l after N steps with
a random trajectory T equals prob((T (N) = l |T ∼ G)),
where T ∼ G denotes that we sample trajectories with

respect to distribution given by prob((·;G)).
Next, we introduce a binarized graph G, where we bi-

narize the connections from any pair of nodes. For a fixed
d ∈ {0, 1}, we denote G[i, j; d] as the graph that makes a
decision of moving from ui to uj with probability 1.

In the following theorem, we show that if G has no cycles,
then we can decompose the probability of its trajectory into
the mixture of such binarized graphs.

Theorem B.1. Let G be a SBDG where the probability of
visiting twice an arbitrary node by a trajectory of length N
is zero. Moreover, ui be an internal node, fixed d ∈ {0, 1},
and an arbitrary trajectory T of length N . Then

prob((T ;G)) =

n∑
j=1

md
jiprob((T ;G[i, j, d])). (1)

Proof. Let T = (uit)t=1..N be a given trajectory and let
us consider three cases of passing trough node ui. First
case assumes that T does not pass through ui, i.e. i ̸= it
for t = 1, . . . , N . Then, directly from the definition of the
trajectory’s probability

prob((T ;G)) = prob((T ;G[i, j, d])), for an arbitrary j.

This completes the proof of (1) in this case. Hence, let us
now consider the cases where the trajectory T passes through
node ui.

Suppose the second case, when T passes through ui more
than once. In this case, we will show that both the left and
right sides of (1) are zero. Obviously, prob((T ;G)) = 0
follows directly from the assumption that the probability of
visiting twice an arbitrary node by a trajectory of length N
in G is zero. Assume, for an indirect proof that there exist
j such that md

jiprob((T ;G[i, j, d])) > 0. Then md
ji > 0.

Moreover, if T passes though ui and makes a decision d,
then it has to move to uj . In consequence,

prob((T ;G)) = md
jiprob((T ;G[i, j, d])) > 0



Figure 1: Visualization of a shallow SONG (SONG-S) trained on MNIST where the nodes are represented by the learned filters
and the “average” image passing through those nodes (corresponding to the right and left side of each node, respectively).
Notice that SONGs contain filters only in the inner nodes, as it is impossible to move out from the leaves.

is a contradiction.
Let us consider the remaining, third case, when T passes

through ui only once, and makes a decision d. In other
words, there exists a unique t such that it = i and dt = d.
Observe that if j = it+1 then we move from ui to uj and all
the probabilities prob((T ;G[i, l, d])) = 0, for l ̸= j. More-
over, since T visits ui only once, we get prob((T ;G)) =
md

jiprob((T ;G[i, j, d])), which completes the proof.

We now show the consequences of the above theorem for
the SONG model. For this purpose, we assume that X =
(xi)i=1..K where each xi is associated with a label yi. We
also consider SONG G trained on X for trajectories of length
N . Thus for each pair (x, y), we define the probability that
a random trajectory of length N reaches leaf corresponding
to y as prob((T (N) = y |T ∼ Gx)).

In the following theorem, we show that if SONG is trained
with zero CE or BCE loss, then no trajectory of length N in
Gx visits the same internal node twice with nonzero proba-
bility.

Theorem B.2. Let us consider SONG classifier with N
moves and x being a data point with class y, such that
loss

(
prob((T (N) = y |T ∼ Gx)), y

)
= 0.

Then no trajectory of length N in Gx visits the same
internal node twice with nonzero probability.

Proof. First observe, that directly from the fact that both
CE and BCE are non-negative, loss

(
prob((T (N) = y |T ∼

Gx)), y
)
= 0 iff

prob((T (N) = y |T ∼ Gx)) = 1.
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Figure 2: Examples of the graph structures obtained by training SONG on the MNIST dataset. The root is the top-most node
in each graph, and the leaves are denoted by double node borders. The numbers on the leaves are the MNIST classes. For each
node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i (represented

as dashed blue and solid red arrows, respectively).
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Figure 3: Examples of the graph structures obtained by training SONG on the CIFAR10 dataset. The root is the top-most
node in each graph, and the leaves are denoted by double node borders. The numbers on the leaves are the CIFAR10 classes.
For each node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i

(represented as dashed blue and solid red arrows, respectively).

Now suppose that there exists a trajectory T with nonzero
probability, which goes through a given internal node u
twice, i.e. T (t1) = T (t2) = v for t1 < t2. Observe that
T (t) is not a leaf for t ∈ [t1, t2], since after reaching the leaf,

we stay in it. Consider the trajectory T̃ given by

T̃ (t) =

T (t) if t ≤ t1,

T (t1 + s) if t = t1 + l(t2 − t1) + s,
l ∈ N, s ∈ {0, .., t2 − t1}

.

In other words, this is a trajectory that forms a cycle after
reaching u. Thus we does not end in a leaf with nonzero
probability, which leads to a contradiction.
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Figure 4: An input image passing through a SONG trained on CIFAR10. High saturation of the green color denotes high
probability in the node. Each graph represent a consecutive step of the inference (from left to right, then top to bottom).
For each node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i

(represented as dashed blue and solid red arrows, respectively).

The accuracy of G over set X is defined as the probability
of predicting the correct class

acc(G;X) =
1

K

K∑
i=1

prob((T (N) = yi |T ∼ Gxi
)).

As a direct consequence of Theorem B.1, we formulate the
following fact.

Theorem B.3. Let G be a SONG. We assume that for every
x ∈ X no trajectory in Gx of length N that visits twice the
same internal node with nonzero probability. Let a node
index i ∈ {1, . . . , n} and d ∈ {0, 1} be fixed. Then

acc(G;X) =

n∑
j=1

md
jiacc(G[i, j, d];X).

Proof. By Theorem B.1, for an arbitrary point x ∈ X (with
class y) and trajectory of length N , we have

prob((T ;Gx)) =

n∑
j=1

md
jiprob((T ;Gx[i, j, d])).

In consequence,

prob((T (N) = y |T ∼ Gx)) =

=

n∑
j=1

md
jiprob((T (N) = y |T ∼ Gx[i, j, d])).

Averaging the above probability over all points from X and
applying the definition of accuracy, we obtain the assertion
of the theorem.

Observe that the above theorem implies that if we dis-
cretize connections in the graph by applying formula (2)
(below), then we do not decrease the accuracy of the model
(statistically, we increase it):

Theorem B.4. Let Gx be SONG generated for x ∈ X with
CE or BCE loss equals zero. Moreover, let node index i ∈ I
and d ∈ {0, 1} be fixed, and

j = argmax
j̃

acc(G[i, j̃, d];X). (2)

Then
acc(G;X) ≤ acc(G[i, j, d];X).

Proof. From Theorem B.2 we obtain that Gx is SONG gen-
erated for x ∈ X with no trajectory of length N that visits
twice the same point with nonzero probability. Theorem B.3
implies that if we discretize connections in the graph by
applying formula (2), then we do not decrease the accuracy
of the model.

C. Ablation study on leaves regularization
In Figure 8, we present a comparison between SONG

trained on MNIST dataset with (a) and without Lleaves reg-
ularization (b). The accuracy and BCE loss reported at the
final stage of training are similar for both models. However,
there are significant differences between their convergence
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Figure 5: An input image passing through a SONG trained on CIFAR10. High saturation of the green color denotes high
probability in the node. Each graph represent a consecutive step of the inference (from left to right, then top to bottom).
For each node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i

(represented as dashed blue and solid red arrows, respectively).

times. Most interestingly, models with regularization hold
Lleaves close to 0 during the whole training, so the sum
of probability in the leaves is close to 1 all the time. On
the other hand, the models without regularization have an
increased value of Lleaves between 50 and 150 epoch, mean-
ing that the leaves are not reached for some of the input

samples. Such behavior can be especially detrimental for
larger datasets that require more training epochs to converge.

D. Nodes and edges statistics

Here, we show the nodes and edges statistics calculated
for SONGs trained on the MNIST dataset (see Figure 9,
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Figure 6: An input image passing through a SONG trained on CIFAR10. High saturation of the green color denotes high
probability in the node. Each graph represent a consecutive step of the inference (from left to right, then top to bottom).
For each node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i

(represented as dashed blue and solid red arrows, respectively).
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Figure 7: An input image passing through a SONG trained on CIFAR10. High saturation of the green color denotes high
probability in the node. Each graph represent a consecutive step of the inference (from left to right, then top to bottom).
For each node vi, we present two edges corresponding to the highest probability from two transition vectors m0

·i and m1
·i

(represented as dashed blue and solid red arrows, respectively).
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(a) SONG trained with Lleaves regularization.
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(b) SONG trained without Lleaves regularization.

Figure 8: Accuracy, BCE loss, and Lleave in the successive training epochs of SONG trained on the MNIST dataset. Each
color represents a different number of internal nodes (64, 128, 255), and each line corresponds to mean and standard deviation
over multiple training repetitions.

respectively). It is discussed in the article.

E. Additional results

Tables 1, and 2 show the relationship between the number
of nodes and steps and prediction accuracy.

F. Transition matrices

In Figures 10-14, we present sample matrices M0 and
M1 before and after training. One can observe that at the
beginning, there are weak connections between all nodes.
However, trained matrices are almost binary and usually
contain one value close to 1 in each column, and all other
values are close to 0.

G. Experimental setup

We used the following datasets in our experiments:

• Letter (https://archive.ics.uci.edu/ml/
datasets/Letter+Recognition),

• Connect4 (http://archive.ics.uci.edu/
ml/datasets/connect-4),

• MNIST (published under CC BY-SA 3.0 license),

• CIFAR 10 & CIFAR 100 (published under MIT li-
cense),

• TinyImageNet (https://www.kaggle.com/c/
tiny-imagenet/data).

nodes steps base finetune reset

9 10 97.95 98.43 98.67
16 8 98.23 98.81 98.66
32 8 98.35 98.61 98.81
32 10 98.65 98.52 98.71
64 20 98.68 98.63 98.72

(a) MNIST.

nodes steps base finetune reset

9 10 94.94 94.98 95.26
16 6 94.95 95.09 95.47
32 6 94.95 95.12 95.62
64 10 94.94 95.03 95.41

(b) CIFAR10.

Table 1: Results obtained for selected models from Table 3
in the main paper (“base”) and their finetuned versions. We
analyze two types of finetuning, either by using basis weights
and finetune all the parameters of the network (“finetune”)
or by taking the graph structure from the base model, reset
other network parameters, and train the network from scratch
(“reset”). One can observe that there is no obvious winning
strategy, and it should be considered a hyperparameter. No-
tice also that we bold the performance reported in the main
paper.

Moreover, we consider two types of setups, deep (SONG)
and shallow (SONG-S). In SONG, we build neural networks
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Figure 9: Nodes and edges statistics calculated for SONGs trained on the MNIST dataset. For each combination of the number
of internal nodes and steps, 20 graphs are trained and used to plot the distributions of four statistics. One can observe a
significant difference in SONG structure depending on those hyperparameters.

that contain two successive parts, CNN and a graph. For
the MNIST dataset, the CNN is built from two convolution
layers with 8 and 16 filters of size 5 × 5, each followed
by ReLU and 2 × 2 max pooling. Finally, a linear layer
returns representation vectors of dimension 50. For other
datasets (CIFAR10, CIFAR100, and TinyImageNet), we use
model ResNet18 without the last linear layer. At the same
time, for SONG-S, we only flatten the input sample to a
one-dimensional vector.

For SONGs, we apply a similar experimental setup
as in the state-of-the-art methods to have compara-
ble results. More precisely, we take the previously
trained ResNet18 network, remove its last layer, and
use the remaining part as a CNN part. For the
MNIST data, we train the first part directly using Binary
Cross Entropy (BCE) loss. For the remaining datasets,
we take a model from github.com/alvinwan/
neural-backed-decision-trees (published under
MIT license) trained with Cross Entropy (CE) and finetune
it using BCE loss. During training the SONG, weights of

CNNs are frozen. Moreover, the following hyper-parameters
are considered in the grid-search:

• For MNIST and CIFAR10:

– the number of nodes: 9, 16, 32, 64,

– the number of steps: 4, 6, 8, 10, 20.

• For CIFAR100:

– the number of nodes: 99, 256, 512,

– the number of steps: 7, 12, 20, 40.

• For TinyImagenet200:

– the number of nodes: 512,

– the number of steps: 20, 40.

Additionally, we consider a batch size 64 or 128 and the
learning rate 0.001 for all datasets. Finally, when it comes
to initialization, M0, M1, and biases in nodes are initialized
from a uniform distribution on the interval [0, 1], and the



steps

nodes 5 10 20 30 40 50

25 52.65 63.45 62.90 63.85 67.65 68.55
32 53.65 62.65 72.90 73.30 73.20 73.55
64 57.95 74.00 78.70 79.70 82.95 82.95
128 57.00 73.85 79.60 83.05 84.45 85.75
511 48.75 72.35 81.60 82.50 84.05 86.25

(a) Letter.

steps

nodes 2 5 10

2 77.47 77.40 77.50
8 75.37 79.60 80.27
16 75.47 80.31 81.55
32 75.36 80.45 82.65
255 75.43 80.43 82.82

(b) Connect4.

steps

nodes 4 6 8 10 20 30 40 50

9 87.58 88.68 88.52 88.93 89.36 90.48 90.36 90.40
16 90.74 91.73 93.06 93.09 93.42 92.97 93.39 93.37
32 88.80 91.47 93.22 93.56 94.38 93.67 93.72 93.56
64 86.35 92.77 93.33 93.41 94.66 94.29 94.86 94.55
128 90.10 93.11 93.65 94.15 94.58 94.80 94.99 94.97
255 90.05 93.11 93.80 93.88 94.28 94.75 95.43 95.74

(c) MNIST.

Table 2: SONG as a shallow model (SONG-S). One can
observe that the performance increases with the increasing
number of nodes and steps for all datasets. We bold the
performance reported in the main paper.

remaining parameters (filters in the nodes) use the Kaiming
initialization.

For SONG-S, the following hyper-parameters are consid-
ered in the grid-search:

• For Letter dataset:

– the number of nodes: 25, 32, 64, 128, 511,

– the number of steps: 5, 10, 20, 30, 40, 50.

• For Connect4 dataset:

– the number of nodes: 2, 8, 16, 32, 255,

– the number of steps: 2, 5, 10.

• For MNIST dataset:

(a) Initial values of M0, M1.

(b) Trained values of M0, M1.

Figure 10: Sample matrices M0 and M1 of the SONG be-
fore and after training on the MNIST dataset with 16 internal
nodes.

– the number of nodes: 9, 16, 32, 64, 128, 256,

– the number of steps: 4, 6, 8, 10, 20, 30, 40, 50.

The remaining hyper-parameters are similar to the SONG
setup.

H. Computation time and resources
We have run our experiments on Nvidia V100 32GB

GPUs of our internal cluster. For deep setup, we trained
50, 50, 25, and 10 models for MNIST, CIFAR10, CI-
FAR100, and TinyImageNet, respectively. Each model re-
quired around 2, 2, 6, and 10 hours, respectively. For the
shallow setup, we trained 60, 30, and 96 models for Letter,
Connect4, and MNIST, respectively. In this case, each model
required around 5, 2, and 2 hours, respectively.



(a) Initial values of M0, M1.

(b) Trained values of M0, M1.

Figure 11: Sample matrices M0 and M1 of the SONG be-
fore and after training on the MNIST dataset with 32 internal
nodes.

(a) Initial values of M0, M1.

(b) Trained values of M0, M1.

Figure 12: Sample matrices M0 and M1 of the SONG be-
fore and after training on the MNIST dataset with 64 internal
nodes.



(a) Initial values of M0, M1.

(b) Trained values of M0, M1.

Figure 13: Sample matrices M0 and M1 of the SONG be-
fore and after training on the MNIST dataset with 128 inter-
nal nodes.

(a) Initial values of M0, M1.

(b) Trained values of M0, M1.

Figure 14: Sample matrices M0 and M1 of the SONG be-
fore and after training on the MNIST dataset with 256 inter-
nal nodes.


