Appendix to “A Simple and Efficient Pipeline to Build an End-to-End
Spatial-Temporal Action Detector”

This appendix provides further details of the main paper.
We present extra experiments and visualizations. (1) Our
SE-STAD can cooperate with stronger action classification
heads; (2) The ablation of feature pyramid architecture; (3)
Additional visualizations of TLA.

1. Cooperating with stronger action classifica-
tion heads

In this paper, we dive deep into building an end-to-
end spatial-temporal action detector with minimum efforts.
Contrary to [2, 6] which highly rely on extra attention mech-
anisms, no additional attention module is introduced in our
proposed SE-STAD. In order to show that our SE-STAD
could also benefit from attention modules, we adopt a sim-
ple ACRN head [8] as the action classification head. Table 1
shows the experiment results. We could find that the basic
SE-STAD could get 1.5% gains from the introduced simple
ACRN head. Such results demonstrate that we could further
boost the performance with other fancy attention modules,
such as [8, 7].

Method | Attention Module | val mAP
SE-STAD None 25.5
SE-STAD ACRN [8] 27.0

Table 1. Ablation study on classification head. We try to use
ACRN [8] head as the classification head. Experiments are per-
formed with SlowFast R50 backbone.

2. Cooperating with other backbones

For fair comparisons, we only perform experiments with
SlowFast backbone in the main paper. To show the general-
izability of our model, we further perform experiments with
I3D [1] network. As shown in Table 2, we could reach 23.0
mAP with the I3D backbone which is still far better than
AVA baseline [5] and result obtained with more pretraining
data and heavy head [4].

3. Ablation of feature pyramid architecture

As shown in Fig. 2 in this paper, we build the feature
pyramid (P3-P5) on top of features of keyframes from Res3

Method ‘ Backbone | Pretrain | val mAP
AVA baseline [5] 13D [8] K400 15.8
Better baseline™* [4] 13D [8] K600 219
SE-STAD 13D [8] K400 23.0
SE-STAD SlowFast R50 [3] K400 25.0

Table 2. Ablation study on different backbones. We try to use
13D as the backbone of SE-STAD. No additional attention module
is introduced. * means the “Better baseline” method use heave I3D
blocks to perform action classification.

and Res4 layers. We adopt such an architecture after con-
sidering the balance of computation complexity and perfor-
mance. We do extra experiments about adopting different
feature pyramid architectures to perform actor localization.
Experiment results are shown in Table 3. These results
show that the architecture of the feature pyramid does not
play the most essential role in SE-STAD. Although build-
ing P2-5 on Res2-4 could boost the performance from 25.5
to 26.0, it will introduce around 40% computation addition-
ally. Hence, we select to build P3-P5 based on Res3 and
Res4 to make a trade-off between the detector performance
and computation complexity.

Method | Source | Target | val mAP | GFLOPs
SE-STAD | Res3-4 | P3-5 25.5 111.3
SE-STAD | Res3-5 | P3-5 25.2 113.4
SE-STAD | Res2-4 | P2-5 26.0 152.8

Table 3. Ablation study on the architecture of feature pyramid.
We try different feature pyramid architectures with SlowFast R50
backbone.

4. FLOPs Analysis

We analyse the component of different spatial-temporal
action detectors, including proposal-based methods and our
SE-STAD. The analysis results are in Fig. 2. From Fig. 2,
we can easily observe that: FCOS head only occupies
around 12% percent of the whole SE-STAD, and back-
bone action classification network has the majority compu-
tational complexity in SE-STAD. In contrast, the majority
computational burden of two-stage detectors lies in the per-
son detector part, which is redundant.



Figure 1. Visualization of results generated by TLA. Top row: the former neighbour keyframe with ground-truth annotations. Medium
row: the later neighbour keyframe with ground-truth annotations. Bottom row: the frame labeled by TLA. Last column: a failure case. The
figure is best viewed when zoomed in. Numbers of person proposals indicate the entity ids in keyframes with ground-truth annotations and

assigned entity ids in frames labeled by TLA.
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Figure 2. FLOPs pie chart with different parts in the spatial-
temporal action detector. The left figure is our SE-STAD and the
right figure is the proposal-based SlowFast. FLOPs of action clas-
sification head is ignored as the computation complexity of this
part is too small. Both methods use the same SlowFast R50 back-
bone.

5. Visualization of TLA

In Sec. 3, we propose a novel labeling strategy, i.e., the
temporal label assignment (TLA), to better utilize every
possible piece of information in sparse annotated spatial-
temporal action detection datasets. TLA which utilizes the
temporal restriction could provide more clear temporal ac-

tion boundaries and fine-grained information to the detector.
In Fig. 1, we visualize some results produced by TLA. The
visualization results illustrate that TLA produces relatively
reliable pseudo labels successfully on unlabeled frames. In
addition, we find that there are often missing labels in pro-
vided ground-truth annotations which deteriorate the per-
formance of the spatial-temporal action detector. Whereas,
thanks to the promising actor localization ability of SE-
STAD, TLA could detect most of the actors and assign de-
pendable labels.
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