
ReEnFP: Detail-Preserving Face Reconstruction by Encoding Facial Priors

In this supplementary file, we will provide more results
to validate the effectiveness of our method. Section 1 intro-
duces the implementation details. Section 2 demonstrates
texture reconstruction performance, including an illustra-
tion of some intermediate results and comparison with pre-
vious [7, 8, 11, 16, 18] and recent [6, 12] studies. In section
3, we present geometry comparison with state-of-art meth-
ods [21, 5, 9, 3, 4, 17].

1. Texture Results

1.1. More Results on Texture Reconstruction

Experiment Settings. We present more intermediate re-
sults in Fig. 1 to further demonstrate representation power
of our model. From left to right list the input image, recon-
structed albedo and illumination, UV texture, transformed
UV texture and its rendered image. Our model encodes
the input image to the latent space of a fixed texture gen-
erator and produces its albedo and illumination. The il-
lumination is represented as a single-channel ratio image
to describe brightness as in previous relighting study [10].
Following a similar paradigm in [10], we multiply the Y
channel of albedo by ratio image in YUV color space and
convert it back to RGB space to obtain the UV texture.
Since we employ a mesh topology [13] different from pre-
vious work [14], we convert back to Basel Face Model 2009
(BMF09) [14] by NRICP [1]. Note that our UV texture do
not include eyeballs, so we rasterize the input eye part to
UV of BFM09 as [13]. Finally, we show the rendered im-
age at two different angles in the rightmost column.

Analysis of Experiment Results. As is shown in Fig. 1,
our model achieves great robustness in reconstruction un-
der varying facial appearance scenarios. Realistic texture
with high-fidelity can be reconstructed for portraits of dif-
ferent skin colors and diverse facial features. Besides, all
the albedo images share muted tones, which will be adjusted
by ratio image to fit in real-world conditions. The ratio im-
age is responsible for correctly increasing the brightness
and contrast of albedo, making the lighting close to real-
world environmental illumination. This practice reduces the
difficulty of facial appearance learning, which is also vali-
dated in ablation study.

1.2. Texture Comparison with Existing Methods

Comparison Methods. We demonstrate our framework’s
capability to represent facial texture by providing more
comparison results with state-of-art methods [7, 8, 11, 16,
18, 6, 12]. Works of Tran et al. [18], Jackson et al. [11]
and Tewari et al. [16] are further introduced for compari-
son. Tran et al. [18] proposes a novel strategy to learn ad-
ditional proxies as means to side-step strong regularizations
and promote detailed shape/albedo. Their method improves
the non-linear 3D morphable model in both learning objec-
tive and network architecture. Jackson et al. [11] follows
non-parametric model strategy by directly regressing from
input image to voxel coordinates with an hourglass struc-
ture. Without using statistical face models, their approach
has large potential for exploring solution space. Tewari et
al. [16] tries to extend 3DMM representation power by em-
bedding 3DMM basis into DCNN. Their training scheme
combines the advantages of 3DMM for regularization with
out-of-space generalization of a learned corrective space.

Analysis of Comparison. Comparison with previous meth-
ods [7, 8, 11, 16, 18] is shown in Fig. 2. Although Tewari et
al. [16] recovers more details than before, their method still
struggles to recover high-level details because their training
process involves strong regularization. The reconstructed
surface of Jackson et al. [11] is not smooth due to high free-
dom of their model. Genova et al. [8] adopt an unsuper-
vised scheme to regress 2D image to 3DMM coordinates
where only unlabeled images and synthesized images are
used. But their results still suffer from over-smoothed ar-
tifacts since their model is restricted to linear model. Tar-
geting at improving on non-linear 3DMM, Tran et al. [18]
captures higher-level details. Gecer et al. [7] achieves re-
alistic texture reconstruction by optimizing the latent code
of a fixed generator. But the identity preservation is not
very well since their manually collected dataset is unable to
cover diverse facial appearances. In contrast, our approach
compares favorably to them in terms of both identity simi-
larity and high-level detail reconstruction. Fig. 3 illustrates
more comparison results with recent works(e.g. OSTeC [6]
and AvatarMe [12]). Our performance is on par with OS-
TeC [6] but without huge amount of time consumption.
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Figure 1: More Texture Reconstruction Results.
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Figure 2: Texture Comparison with Existing Methods [7, 8, 11, 16, 18].
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Figure 3: Texture Comparison with Existing Methods [6, 12].

2. Geometry Results
We provide more visual geometric comparison results

with existing studies [21, 5, 9, 3, 4, 17] in Fig. 4. Fo-
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Figure 4: Geometry Comparison with Existing Methods [21, 5, 9, 3, 4, 17].

Figure 5: Our pipeline achieves high robustness in occlusion or large pose situation.

cusing on detail preservation, our method achieves better
fine-grained geometric manifestation consistent with input
image. For comprehensive comparison, we also evalu-
ate geometric reconstruction results as previous works [19,

2, 15, 3]. Table. 1 depicts comparison of the point-to-
planes distance of reconstructed meshes in MICC dataset,
which suggests our framework achieve competitive results
with state-of-art methods. Moreover, we achieve lower dis-



Table 1: Comparison of Geometric Reconstruction Er-
ror. Point-to-Plane distance under various scenarios in
MICC dataset is demonstrated

Cooperative Indoor Outdoor

Method Mean Std Mean Std Mean Std

Tran et al. 1.93 0.27 2.02 0.25 1.86 0.23
Booth et al. 1.82 0.29 1.85 0.22 1.63 0.16
Piotraschke et al. 1.68 0.57 1.67 0.47 1.73 0.53
Deng et al. 1.60 0.51 1.61 0.44 1.63 0.47
Ours 1.51 0.55 1.52 0.42 1.54 0.48

Figure 6: Demonstration of Relighting Application. The
input images and its inverted p-albedos are illustrated in the
first row. The second and third row show rendering results
under various illumination environment.

placement L1 error than [20] on validation split (12.20 vs.
14.34), which justifies our architecture design superior to
their UNet [20] strategy.

3. Further Analysis
Robustness in Occlusion Scenario. As illustrated in Fig. 5,
our methods demonstrate great robustness in reproduce tex-
tures under challenging conditions e.g. low-quality input,
large pose and occlusion by hands or glasses.
Demonstration of Relighting Application. We depict the
relighting results as shown in Fig. 6. Although our net-
work is not designed for disentanglement of illumination
and albedo, we here still illustrate some relighting applica-
tions based on synthesized pseudo-albedo. Since only weak
supervision is utilized without other labels, some illumina-
tion information remains in the pseudo-albedo.
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