
7. Supplementary Material

This section is a supplement for the main part of the
paper. In this section, we detail additional formulas for
the backgrounds (7.1), demonstrate our Pseudo-codes and
stopping criteria (7.2), show more adversarial examples for
both OPA and CTA respectively (7.3), visualize the diver-
sity of attacking labels (7.5), discuss the most appropriate
hyper-parameter settings (7.7). We also present the attack
result OPA on 2D images as a comparable reference (7.8).
We provide visualisations of the Activation Maximization
(AM) and more attribution distribution of PC networks (7.9
and 7.10 respectively). Finally, we discuss the societal im-
pacts and ethical issues (7.11).

7.1. Background

7.1.1 Point cloud deep neural networks

A PC input can be represented as P = {p0, ..., pn}, where
pi ∈ R3 and n is the number of component points. Com-
pared with 2D images, the structural peculiarity of PC data
lies in the irregularity: let R(S) be a function that ran-
domly disrupts the order of the sequence S, a PC classi-
fier f must possess such properties: f(P ) = f(R(P )),
which is regarded as a ”symmetric system”. The pioneer
of PC networks is proposed by [33], succeeded by em-
ploying an symmetric function g(S) and an element-wise
transformer h(p) where f(P ) ≈ g({h(p0), ..., h(pn)}) (in
their experiments a max-pooling is choosen as g(S)). Point-
Net++ [34], the successor of PointNet, further coalesced
hierarchical structures by introducing spatial adjacency via
grouping of nearest-neighbors. DGCNN [50] extended the
the predecessors by dynamically incorporating graph rela-
tionships between multiple layers. All of the point-based
methods achieve satisfactory accuracies on acknowledged
PC dataset such as ModelNet40 [53].

7.1.2 Integrated Gradients

Gradients-based explainability methods are oriented on
generating saliency maps of inputs by calculating gradients
during propagation. While vanilla gradients severely suffer
from attribution saturation [45], [46] proposes IG which
accumulates attributions from an appropriate baseline be-
fore the gradients reach the saturation threshold. IG is for-
mulated as:

IGi = (xi − x′
i) ·

∫ 1

α=0

∂F (x′ + α(x− x′))

∂x
dα (S1)

Where x′ denotes the given baseline.

7.1.3 Targeted vs. Untargeted attack

For a given classifier f and its logits a, an PC input instance
P and an adversarial perturbation Ap:

• Targeted attack

Minimize (a[f(P )+Ap]) s.t. f(P+Ap) ̸= f(P )
(S2)

• Untargeted attack

Maximize (a[f(P +Ap)]) s.t. f(P +Ap) = T
(S3)

Where T is the given target class.

7.1.4 Activation Maximization (AM)

Activation Maximization (AM), first proposed by [13], sets
out to visualize a global explanation of a given network
through optimizing the input matrix x while freezing all pa-
rameters θ such that the selected ith activation neuron at lth

layer Sl
i is maximized [31]:

x∗ = argmax
x

(ali(θ, x)) (S4)

7.2. Other implementation details

7.2.1 Stopping Criteria

Theoretically, CTA can keep searching until all positively
contributed points are traversed. For algorithmic efficiency,
we set specific stopping criteria for OPA and CTA.

OPA: With the introduction of Gaussian random noise
for OPA, the optimization process may fall into an everlast-
ing convergence-noise addition loop, a manually configured
failure threshold is therefore essential. A recorder Ra is
built to record the corresponding prediction activation for
each period. We set a global maximum iterations Imaxg .
The stopping criterion of OPA is fulfilled when

• Icur > Imaxg or ((Mean(Rk+1
a ) > Mean(Rk

a) and
V ar(Rk

a)→ 0)).

Due to the introduction of random Gaussian noise, the opti-
mization process will not fail until the target activation has
no fluctuant reaction to the Gaussian noise.

CTA: There are both local and global stopping criteria
for CTA. Local criterion stands for terminating the current
Np perturbed points and start the Np + 1 round, which is
similar with OPA. Again, we set an activation recorder Ra

and a local maximum iterations Imaxl. The local stopping
criterion is fulfilled when:

• Icur > Imaxl or Mean(Rk+1
a ) > Mean(Rk

a)



Model PointNet PointNet++ DGCNN PointMLP
% of Lg. 41.2% 13.3% 13.4% 8.8%

Table S1. Legality of adversarial examples generated by different
models. % of Lg. represents the percentage of the legal adversar-
ial examples to the total.

Global stopping terminates the optimization of the current
instance and registers it as ”failed”. CTA is designed to
shift all the positively attributed points Npos in the worst
case which is extremely time-consuming. For practical fea-
sibility, we specify the global maximum iterations Imaxg .
The global stopping criterion for CTA is fulfilled when:

• Icur > Imaxg or Np ⩾ Npos

where Npos is the total amount of positive attributed points
according to the explanation provided by IG.

7.3. More qualitative visualizations for OPA and
CTA

We selected 10 representative classes from Modelnet40
that occur most frequently in the real world and demonstrate
another 10 adversarial examples for each class generated by
OPA and CTA in Fig. S1 and S2 respectively. The per-
turbed points are colored with red for better visualization.
As the success rate of the OPA attack is close to 100%,
in order to distinguish the results of CTA from OPA more
clearly, we set β in CTA as (8 × α). This setting makes a
good trade-off between success rate, shifting distance and
perturbation dimensionality. The detailed experimental re-
sults are demonstrated in section 7.7.

7.4. Legality of adversarial examples

In this section we analyze the legitimacy of the generated
adversarial examples. For most point cloud datasets, the in-
put coordinate values are normalized to a specific interval
to facilitate the prediction of objects at different scales. For
ModelNet40, all instances are normalized to the interval of
[−1, 1]. Therefore, we regard those adversarial examples
that are still within the original interval as ”legal” and oth-
erwise as ”illegal”. As the results shown in Table S1, for
PointNet, a significant portion of the adversarial examples
are still legal. For the rest of the models, however, the vast
majority of the examples are outside the legal range. Again,
this reveals that PointNet is less robust as grouping modules
of adjacent points are missing.

7.5. Label Diversity of adversarial examples

For non-targeted OPA and CTA, the optimization pro-
cess diminishes the neurons corresponding to the original
labels, with no interest in the predicted labels of the ad-
versarial examples. However, we found that observing the
adversarial labels helped to understand the particularities of

the adversarial examples. Fig. S3 and S4 report the label
distribution matrices of untargeted OPA and CTA respec-
tively. As can be seen from Fig. S3, class ”radio” is most
likely to be the adversarial label, and most of the adversarial
examples generated within the same class are concentrated
in one of the other categories (e.g. almost all instances from
”door” are optimized towards ”curtain”). This phenomenon
is significantly ameliorated in CTA (see Fig. S4). The tar-
get labels are more evenly distributed in the target label ma-
trix, yielding more diversity in the adversarial examples.

7.6. Transferability of random seeds

Random sampling is involved in numerous point cloud
networks. Since our method requires very few points to
be perturbed, it raises concerns about the transferability
of different random sampling seeds. In this subsection
we study the impact of random seeds on attack perfor-
mances. We consider only two networks, PointNet++ and
PointMLP, both of which employ Farthest Point Sampling
(FPS) [34, 27] (PointNet and DGCNN do not contain this
module). First, the above two models are attacked with the
random seed r1. We then predict the generated adversarial
examples utilizing the random seeds of r2,3..n (r1 ̸= r2 ̸=
... ̸= rn) and record the success rates. Five different seeds
are experimented and the results are reported in Table S2.
According to the results, PointNet++ and PointMLP attacks
almost fail on themselves if the random seeds alter. We
consider the reason to be that the original sampled points
become adjacent ones or even unrelated to the classification
due to the seed variation.

7.7. Hyper-parameter settings

7.7.1 Distance regularization β

For both proposed algorithms, there are two crucial hyper-
parameters to be tuned that affect the performance of the at-
tacks, i.e. α and β. α indicates the optimization rate and is
empirically set to 1e− 6. β indicates the penalty of pertur-
bation distances, which regularizes the shifting magnitude
and preserves the imperceptibility of adversarial examples.
In previous experiments, we temporarily set β to 0 to high-
light the sparse perturbation dimensions. However, addi-
tional investigations suggest that appropriate beta can fur-
ther improve the performance of the proposed approaches.
Fig. S5 demonstrates the performances with different β set-
tings. Interestingly, we found that CTA performs best when
β = α: while maintaining nearly 100% success rate and
comparably shifting distances, its average Np dramatically
decreases to 3.04 (different from OPA, CTA employs no
random-noise). We strongly recommend restricting β to a
reasonable range (≤ (8 × α)) since large β easily leads to
an explosion in processing time.



Figure S1. More results from OPA. We chose the 10 representative classes that appear more frequently in the real world. The perturbed
points are indicated in red to be noticeable.

PN PN++ DGCNN PointMLP
Acc.% 100 9.4± 1.15× 10−3 100 17.8± 1.35× 10−3

Table S2. Mean transferability of random seeds for FPS. Note that only PointNet++ and PointMLP utilize FPS.

7.7.2 Gaussian noise weight Wn for OPA

In particular for OPA, another hyperparameter Wn is set
to prevent the optimization process from stagnating at a
local optimum. We experimented with various settings
of Wn and present the results in Fig. S6. What stands

out in the figure is that the appropriate range for Wn is
around 10−1 to 10−0.5 where the success rate approximates
100% while maintaining acceptable perturbation distances.
Adding Gaussian noise in the optimization process dramati-
cally enhances the attack performance of OPA, with its suc-
cess rate increasing from 56.1% as a simple-gradient attack



Figure S2. More results from CTA. We also chose the 10 representative classes that appear more frequently in the real world. The perturbed
points are indicated in red to be noticeable.

to almost 100%. Interestingly, we observe that a suitable
noise weight concurrently reduces the perturbation distance
and thus augments the imperceptibility of the adversarial
examples. We attribute this to the promotion of Gaussian
noise that facilitates the optimizer to escape from saddle
planes or local optimums faster, reducing the number of to-
tal iterations. However, overweighting deviates the critical
point from the original optimization path, which is equiv-
alent to resetting another starting position in 3D space and

forcing the optimizer to start iterating again. While there re-
mains a high probability of finding an adversarial example,
its imperceptibility is severely impaired.

7.8. OPA on 2D image neural network

We extend our OPA to 2D image neural networks for
a rough comparison of its sensitivity to critical points with
that of 3D networks. We trained a simple ResNet18 net-
work with the MNIST handwriting dataset, which achieves



Figure S3. Heat map of successful attacks by OPA across labels. Rows indicate from which category the adversarial examples come and
the columns indicate to which category they are predicted. The brighter the square, the more examples that fall into the corresponding
category.

an accuracy of 99% on the test set. We select 1000 sam-
ples from the test set as victims to be attacked with OPA.
The quantitative results and parts of the adversarial exam-
ples are demonstrated in table S3 and Fig. S7 respectively.
In Fig. S7, the original instances and their adversarial re-
sults are listed on the first and the second row respectively.
With the removal of a pixel in a critical location, a small
number of test images successfully fooled the neural net-

work. However, from a quantitative viewpoint (table S3),
shifting one critical point almost fails to fool the ResNet18
network (1.2% success rate for ResNet18-LG). We believe
the reasons are: (1) 2D images are restricted within the
RGB/greyscale space, thus there exists an upper bound on
the magnitude of the perturbation, while 3D point clouds
are infinitely extendable; (2) Large-size convolutional ker-
nels (≥ 2) learn local features of multiple pixels, which mit-



Figure S4. Heat map of successful attacks by CTA across labels. Rows indicate from which category the adversarial examples come and
the columns indicate to which category they are predicted. The brighter the square, the more examples that fall into the corresponding
category.

igates the impact of individual points on the overall predic-
tion. According to observation (1), we temporarily remove
the physical limitation during attacks to investigate the pure
mechanism inside both networks and report the results in
ResNet18-AL of table S3. Though the attack success rate
climbs to 51.7%, there is still a gap with PointNet (98.7%).
Even with the ”legality” restriction, OPA still maintains a
success rate of 41.2% on PointNet. PointNet encodes points

with 1 × 1 convolutional kernels, which is analogous to an
independent weighting process for each point. The network
inclines to assign a large weight to individual points due to
the weak local correlation of adjacent points and therefore
leads to vulnerable robustness against perturbations of crit-
ical points.



Figure S5. Performance (success rate, Chamfer and Hausdorff distances and the number of shifted points respectively) of OPA and CTA
in different settings of hyper-parameters. The x-axis indicates the logarithm of the quotient of β and α where the first tick denotes β = 0.

Figure S6. Performance (success rate, Chamfer and Hausdorff distances respectively) of OPA in different settings of weights for Gaussian
noise. The x-axis indicates the logarithm of Wn where the first tick denotes Wn = 0.

S Dc Dh

ResNet18-LG 1.2 4.93× 10−2 8.67× 10−1

ResNet18-AL 51.7 1.48 4.08× 101

PointNet-AL 98.7 8.64× 10−4 8.45× 10−1

PointNet-LG 41.2 / /
Table S3. OPA attack performance comparisons between
ResNet18 and PointNet. ResNet18-LG indicates the ”legal” at-
tack within the range restriction of the greyscale value (0 ∼ 255),
while ResNet18-AL indicates a purely numerical attack possibly
with no legality restriction. PointNet-LG and PointNet-LG denote
legal and illegal attacks, respectively, as in Section 7.4.

Figure S7. Successful attack examples of ResNet18-LG by OPA.
The first and second rows are input images and adversarial exam-
ples respectively.

7.9. Maximized activation

The proposed OPA was motivated by a fruitless AM
(see Sec 7.1.4 for introduction) attempt for PC networks.

Fig. S8 displays an example from 1000-steps AM results of
PointNet. More examples with different initializations are
depicted in Fig. S10. We conduct the AM experiments with
various initializations including zero, point cluster gener-
ated by averaging all test data [30] and a certain instance
from the class ”Car”. What stands out in the visualization
is that the gradient ascent of the PC neural network’s ac-
tivations appears to depend solely on the magnitude of the
outward extension subject to the extreme individual points
(the middle figure). We further investigate the explanations
of the AM generations utilizing IG and the analysis reveals
that almost all the positive attributions are concentrated on
the minority points that were expanded (the right figure).
Fig. S9 provides a quantitative view of how target activa-
tion ascends with the shifting of input points and we intro-
duce Gini coefficient [12] to represent the ”wealth gap” of
the Euclidean distance among all points. Interestingly, as
the target activation increments over the optimization pro-
cess, the Gini coefficient of Euclidean distances steepens to
1 within few steps, indicating that the fastest upward direc-
tion of the target activation gradient corresponds with the
extension of a minority of points.

For fairness and persuasion, we also conduct AM ex-
periments with various initializations. Fig. S10 shows AM
initialized with zeros and the point cluster generated by av-
eraging all test data [30].



Figure S8. AM results initialized with a certain instance. The
first, second and third columns demonstrate the initialized set of
points, the AM output results after 1000 optimization steps and the
salience map explanation of the corresponding output explained
by IG, respectively. Note that the majority of positively attributed
points (bright red) are exactly the expanded ones.

rD rP
OPA 98.6 100
CTA 99.2 45.6

Table S4. Success rates of defense against the proposed attacks
by outlier removal. rD denotes the success rate of the input in-
stance being detected as adversarial examples and rP denotes the
percentage of perturbation points detected by the defense module
correctly.

7.10. Visualization of the attribution distributions

As a supplementary of table 6, we demonstrate the com-
plete pie diagrams of the attribution distributions of the
aforementioned four pooling structures in S11.

7.11. Societal impacts and ethical issues

This work proposes two adversarial approaches, which
pose a potential threat to the security of PC networks. Mo-
tivationally, however, this paper aims to illuminate the dis-
tribution of attributions of PC networks rather than specifi-
cally targeting the attack method of the model. Practically,
our proposed approaches can be more easily defended visu-
ally or algorithmically compared to related studies aiming
at imperceptibility. Table S4 presents the results of defend-
ing against the proposed attacks by a simple outlier removal
algorithm. Adversarial samples generated by OPA and CTA
are detected with almost 100% success rate. We thus argue
that the proposed attacks do not pose a serious threat to ex-
isting networks.



Figure S9. Correlation between the ascending target activation and the various distances of the optimized example from the original
initializations: zero (left), the average of the test set (middle) and a certain instance (right). Activations are normalized in order to be
visible together with other factors. X-axis denotes the optimization steps and y-axis denotes corresponding values in the legend. The
marked points are the steps in the optimization process where the Gini coefficient of the attribution first reaches 0.8.

Figure S10. AM results initialized with zeros (the first row) and the point cluster generated by averaging all test data (the second row)
respectively. The first, second and third columns demonstrate the initialized set of points, the AM output results after 1000 optimization
steps and the salience map explanation of the corresponding output explained by IG, respectively. In the explanation, red points indicate
the degree of positive attributions.



Figure S11. The distributions of attributed points of PointNet structured with max, average, median and sum-pooling layers as the global
feature extraction layer respectively.


