
S1. Supplementary Material

S1.1. Non-generative AM and baselines

In this section we provide additional descriptions for Fig.
1. Consider the general term of AM updating according to
the gradient as

x← rθ
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∂ai
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)
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where x and ai denote the input to be optimized and the
target activation respectively, η is the learning rate and rθ
indicates the regularization term. The non-prior refers to
AM without any regularization (rθ = 1). L2 Norm avoids
the dominance of a few extreme pixel values in the whole
image, which changes rθ to x · (1 − θdecay)x to penalize
those extreme pixels. Gaussian blur replaces rθ with a blur
kernel
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in order to penalize high frequency noise, where σ denotes
the standard deviation. The Total variation regularization
adds a term ∂TV (x)

∂x that minimizes the total variation in the
gradient which updates x, where

TV (x) = sup
P

np−1∑
i=0

|xi+1 − xi| (S3)

The Average initialization takes the mean value of the whole
dataset as the initial example, thereby simplifying the opti-
mization difficulty and allowing the generated examples to
be closer to the real data. To show more clearly the defects
of traditional regularization in the point clouds, we illustrate
additional results in Fig. S1.

In table 1 we compare two categories of baselines, ini-
tialization and regularization. The initialization baseline
only adjusts the initial position of AM without interfering
with the optimization process. The zero baseline is the one
that takes an all-zero matrix as the initial input. The random
baseline is generated by sampling random points in a proper
value domain ([−1, 1] for ModelNet40). The average base-
line utilizes with the aforementioned Average initialization
as input. The instance baseline selects a random instance
of the same class as the target activation from the dataset as
input. For regularization baselines, we start with zero as the
initial input and regularize using L2 Norm, Gaussian blur
and TV as described above, respectively.

S1.2. Detailed Architecture

The detailed structures of AE, AED and NAED are il-
lustrated in Figs. S4, S5 and S6, respectively.

S1.3. More qualitative AM results

As a complement to Fig. 3, Fig. S2 demonstrates more
AM qualitative results.

S1.4. Qualitative results for ShapeNet

Figure A exhibits examples of AM of the class ”aircraft”
generated by the proposed methods. S3

S1.5. Ablation Study

To confirm the effectiveness, we perform ablation stud-
ies on each module. Compared to AE, AED has two main
additional modules, i.e. the discriminator D and the hid-
den distance loss LF . On the basis of AED, NAED in-
volves two additional modules, which are Gaussian noise
added during training ZD and the second latent distance
loss LF2. Table S1 reports the results of the ablation tests
for the four modules mentioned above. With similar point-
wise distances, the utilization of Lf tends to generate exam-
ples that are richer in diversity, while the employment of D
prefers examples that are monotonic and closer to real in-
stances. On the other hand, incorporating Gaussian noise
ZD at training significantly improves diversity, while in-
serting an additional hidden distance loss LF2 improves the
quality of the examples to some extent. Note that the abla-
tion studies may not accurately reflect the real performance
of the modules for the following two reasons:

• In the same way that perturbation-based explainability
methods suffer from the bias towards highly correlated
features, there are interactions between the modules in
the model. The ablation of a single module neglects
the correlation with other modules and therefore bias
may also exist. Unfortunately, as neural networks are
complex black boxes, it is impossible to disentangle
how the modules affect each other at this stage.

• The definition of ”perceptibility” is not unique. PC-
AMS involves diversity, representativeness, latent &
point-wise distances, whereas their weights are not
uniform. The reason is that explanations are human-
oriented and subjective. For example, regarding an
explaining example, one part considers the representa-
tion to be more intuitive to enhance the comprehension
of the model while the other believes that the explana-
tions can only be recognized if they are closer to real
objects.

S1.6. Evaluation metrics for Point Clouds AM

For space limitation, we demonstrate the deficiency of
FID in measuring the latent distance of point clouds in fig-
ure S7, as the argument of section 4.2.



Figure S1. Additional demonstration of non-generative AM for point clouds. The target classes for the first and second line are “airplane”
and “table”, respectively. As a conclusion, the non-generative regularization fails to facilitate the point cloud AM to yield perceptible
examples.

Figure S2. Additional AM results of different approaches. From left to right: Zero initialization, random initialization, initialized with the
average of the test data per class, initialized from a specific instance, regularizations via L2 Norm, Gaussian Blur and Total Variation, and
our proposed AE, AED and noisy NAED. Apparently, except for the instance initialization, the non-generative model-based approaches
suffer from serious flaws in perceivability of AM examples (the first three columns). However, the AM example initialized from a certain
instance lacks the “global” property, and the generated examples are unrepresentative.

S1.7. Data reviewing with AM

We present an example of data reviewing with AM for
ModelNet40 in figure S8. The AM instances in the middle
are generated by NAED.



Figure S3. AM examples from AE, AED and NAED respectively
of class “airplane” in ShapeNet. The qualitative performances of
AE, AED and NAED are comparable to those on ModelNet40.

Module m-IS FID CD PC-AMs

AED
LD 1.333 0.026 0.074 4.44
LF 1.077 0.010 0.089 4.56

AllAED 1.124 0.018 0.086 4.37

NAED
ZD 1.204 0.021 0.059 4.52
LF2 1.410 0.019 0.069 4.71

AllNAED 1.461 0.014 0.074 4.89
Table S1. Ablation study for AED and NAED. The upper and
lower halves are the ablation tests for the AED and NAED, re-
spectively. For AED, the models from top to bottom are, in order:
AED without discriminator D, AED without latent distance loss
LF , and AED with both. For NAED, the models are, in order,
NAED without Gaussian noise, NAED without latent distance loss
LF 2, and NAED with both.



Figure S4. Architecture of AE. In the box are the components of AE, and on the right is the legend. In the plot, the black arrows represent
the data flow and the red arrows represent the calculation process of the loss.

Figure S5. Architecture of AED.



Figure S6. Architecture of NAED. The N (µ, σ2) in the upper left represents Gaussian noise with mean and variance of µ and σ2,
respectively.



Figure S7. CD, FID and EMD metrics of instances generated by various parameters (the first two plots and the last two plots are uniform
and Gaussian distributions respectively), where IC denotes intra-class, which is the average of corresponding distances between real objects
in the dataset. r denotes the interval parameter of uniform distribution and σ denotes the variance of Gaussian distribution. The mean of
Gaussian distribution is set to zero to ensure that the generated instances are symmetric about the zero point of the spatial coordinates. The
larger the difference between the non-IC and the IC curves of the corresponding metrics, the better the method is capable of distinguishing
random examples from real ones. Obviously, when r > 0.1 and σ > 0.04, the FIDs are almost indistinguishable from the averaged intra-
class distance. However, it can be seen from CD and EMD that there are still significant discrepancies between the randomly distributed
examples and the real ones.

Figure S8. An example of reviewing the inaccuracies of the dataset. The first column shows the instances in the dataset that are labeled
as ”plant” but are classified as ”vase”. The second and third columns demonstrate the AM output for the categories ”plants” and ”vases”
respectively. The last column exhibits an explanation generated from 3D LIME, where brighter red points represent more positive attribu-
tions while conversely brighter blue points represent more negative attributions, neutral attributed points are colored as black.


