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This supplementary manuscript provides the reader with
an overview of the network layout in Section 1, additional
training details in Section 2, discussion of the performance
in comparison to the state of the art in Section 3, a highlight
of the capabilities of COPE in Section 4 and concludes with
a presentation of error cases in Section 5.

1. Network Design

ResNet101 [5] in conjunction with PFPN [12] is used
for multi-scale feature extraction. This is followed by three
modules, one for location classification, bounding box es-
timation and keypoint estimation that are shared over fea-
ture pyramid levels. Each of the modules consist of four
convolution layers with Mish [11] activation. The convo-
lution layers of the classification module have 256 feature
channels and those of the bounding box and the keypoint
estimation module have 512 feature channels. Linearly ac-
tivated output layers convolve the feature maps to a one-
hot encoding for the object class, bounding box corners and
the number of keypoints. Feature maps are not spatially re-
duced when passing through these modules. The estimated
keypoints are fed to a module that directly learns 6D pose
estimation, consisting of two convolution layers with 512
and 256 feature channels with Mish activation as well as a
linearly activated output convolution with a·9 output param-
eters, where a is the number of classes. Thus, the outputs
are 3 for translation and 6 for rotation for each dataset object
separately. The parameter d in Equation 2 of the submitted
manuscript is set to 3 in all experiments.

2. Training Details

2.1. Backbone

The performance reduction occurring when estimating
poses under domain shift is partially alleviated by setting
low-level stages of the backbone to non-trainable [8, 7, 14].
EPOS [8] freezes the majority of the backbone, i.e. early
and middle flow of Xception-65 [2] when training exclu-
sively on synthetic data. We experienced this strategy to
be infeasible for feature pyramid-based approaches since-
prediction are made from different feature map resolutions
taken also from early and intermediate feature maps of the
backbone. Thus, freezing the weights of all layers up to
the output layers reduces the pose estimation performance
since feature learning for the present task is limited. Hence,
further investigating the adaption of the backbone to have
deeper early stages might lead to improved domain transfer.

2.2. Hyperparameters

All results are presented with the same set of hyperpa-
rameters, the only exception is Table 2 in the submitted
manuscript. For the ablations, the parameter settings are
mentioned in the table.

Training: The relevant hyperparameters are, apart from
the network layout and optimization itself, the base of the
logarithm for location sampling, the visibility threshold for
foreground samples and the color and image space aug-
mentation hyperparameters. A visual comparison for loca-
tion sampling on physically-based rendering images of the
LM [6] objects is provided in Figure 1. The top row shows
our physics-based scheme, the bottom shows using all pyra-
mid levels for training. Without providing quantitative anal-
ysis it is already visible that using all feature pyramid levels



Figure 1. Comparison of Training Location Sampling: Utiliz-
ing the object dimensions for sampling the pyramid level to train
on (top) leads to a similar amount of true locations per object and
prevents ambiguous training locations. Sampling small objects in
coarse feature map resolutions results in aliasing effects that are
detrimental to convergence (bottom). Images are cropped to im-
prove visibility. Best viewed on a screen.

leads to aliasing effects in the lower resolved pyramid lev-
els, while explicitly using object depth and dimension sam-
ples a similar amount of true locations per object.

Training on objects with too much occlusion is detrimen-
tal to pose estimation performance. To overcome this issue
we set the threshold for foreground samples to 0.25 of the
object visibility when computing Lcls; all other losses are
computed for objects with at least 0.5 object visibility. We
apply affine color space transformations to improve the do-
main transfer, as also mentioned in the manuscript, param-
eters and ranges are provided in Table 1. Additionally we
randomly scale training images by 5% to improve transla-
tion equivariance of our trained models.

Inference: Parameters that require manual assignment
are the detection threshold, the Intersection-over-Union
(IoU) for clustering hypotheses, number of hypotheses to
use for the pose computation per instance and the maximal
number of instances per image. All image locations with a
detection threshold above 0.5 are considered as foreground,
thus as true locations containing objects of interest and are
consequently used for hypotheses clustering and pruning.
An IoU of 0.5 is used for clustering instance hypotheses.
An ablation for the amount of hypotheses to derive the final
pose is presented in Table 3 in the submitted manuscript.
The hyperparameter is set to 10 for all experiments apart
from those ablating its influence. For the setting of the
manuscript, the number of maximal instances to detect is
set to 100. Yet, despite there being little restrictions for
that parameter, increasing this threshold contributes little to
nothing since 100 instances to detect per image is already
a considerably large number. After clustering and pruning
hypotheses, those that are not supported by another hypoth-
esis are discarded.

2.3. Evaluation Metrics

Comparison to the state of the art is provided using the
performance score of the BOP challenge [9]. The deviation
of the estimated pose P̂ to the ground truth P is projected
to a scalar value using the average recall of three error met-
rics. These are the Visual Surface Discrepancy, the Maxi-
mum Symmetry-Aware Surface Distance and the Maximum
Symmetry-Aware Projection Distance:

eV SD = avg
p∈V̂ ∪V

{
0 if p ∈ V̂ ∩ V ∧ |D̂(p)−D(p)| < τ ,

1 otherwise

eMSSD = min
s∈Si

max
m∈Mi

||P̂m− Ps||2,

eMSPD = min
s∈Si

max
m∈Mi

||proj3D→2D(P̂m)

− proj3D→2D(Psm)||2, (1)

where V̂ and V are sets of image pixels; D̂ and D are dis-
tance maps and τ is a misalignment tolerance. Distance
maps are rendered and compared to the distance map of
the test image to derive V̂ and V . Si is a set of symme-
try transformations that depend on the visual ambiguities of
the object mesh. Mi is a subset of the mesh vertices and
proj3D→2D(.) denotes the projection to the image space.
For each of these metrics the average recall (AR) is mea-
sured when comparing errors to multiple error thresholds
(and τ in the case of eV SD). Results are then reported
as the Average Recall: AR = (ARV SD + ARMSSD +
ARMSPD)/3.

Ablations are evaluated using the ADD(-S) recall [6]:

eADD = avg
m∈Mi

||P̂m− Pm||, (2)

eADDS = avg
m1∈Mi

min
m2∈Mi

||P̂m1 − Pm2||. (3)

ADD measures the average deviation of models points us-
ing the corresponding point distance. For objects exhibit-
ing symmetric transformations, the ADD-S error, using the
closest point distance, is calculated. We report the fraction
of poses below the commonly used error threshold of 10%
of the object diameter.

Results for object detection are reported using the the
mean Average Precision (mAP) of the Microsoft COCO ob-
ject detection challenge [10].

3. Comparing Detection Performance
The results reported in Table 2 in the submitted

manuscript indicate that the detection performance of
COPE is inferior to that of FCOS [13]. However, this con-
clusion has to be drawn with caution since FCOS only per-
forms 2D Detection. The network size of FCOS is ∼ 50
million parameters just for object detection while COPE ad-
ditionally predict geometric correspondences and direct 6D



Table 1. Color space augmentations applied during training.
Augmentation Chance (per channel) Range
gaussian blur 0.2 σ ∼ U(0.0, 2.0)

average/median/motion blur 0.2 σ ∼ U(3, 7)
bilateral blur 0.2 σ ∼ U(1, 7)

hue/saturation 0.5 U(−15, 15)
grayscale 0.5 U(0.0, 0.2)

add 0.5 (0.5) U(−0.04, 0.04)
multiply 0.5 (0.5) U(0.75, 1.25)

gamma contrast 0.5 (0.5) U(0.75, 1.25)
sigmoid contrast 0.5 (0.5) U(0, 10)

logarithmic contrast 0.5 (0.5) U(0.75, 1.0)
linear contrast 0.5 (0.5) U(0.7, 1.3)

poses with only ∼ 17 million parameters more. Addition-
ally, FCOS uses an input image resolution with up to 1333
pixels for the larger image side while COPE uses 640×480
input images. Thus, COPE solves twice as many tasks with
higher complexity from images with half of the input reso-
lution.

4. Highlights of COPE
Handling Multiple Mutually Occluding Objects The

top row of Figure 2 shows accurate bounding box and pose
estimates on IC-BIN’s [4] Juice. Due to the end-to-end
trainability and the parallel learning of detection and pose
estimation, COPE learns to effectively handle multiple mu-
tually occluding instances of the same object. Increased
mutual occlusion of instances of Coffeecup is displayed in
the middle row, which again shows accurate bounding box
and pose estimates for all the visible object instances. The
bottom row shows a scenario where both Juice and Cof-
feecup are present. Ultimately, a false positive detection of
Juice occurs in the center of the bulk due to the heavy mu-
tual occlusion of multiple instances.

Handling Occlusion in Clutter Figure 3 displays accu-
rate bounding box and pose estimates on occluded exam-
ples of LM-O’s [1] Ape, Can and Eggbox. The middle row
shows similarly occluded examples of Drill, Holepunch and
Glue and the bottom row for Cat and Duck. Despite only
training one model for all of LM’s objects COPE is robustly
handling each object, even under occlusion.

5. Error Cases
Figure 4 presents recurring errors on IC-BIN. The top

row shows an instance of Juice in top-view not being de-
tected, indicated with a red and white circle. Despite the
high relative visibility of Juice these reduced views are not
often sampled during training data generation and are thus
difficult to detect during runtime. The middle row dis-
plays a similar error occuring for Coffeecup, again indicated

with red and white circles. Multiple top-view orientated in-
stances are not detected and thus result in false negative de-
tections. The bottom row shows one instance of each Cof-
feecup and Juice not being detected despite providing rich
visual features. Assigning true training locations on objects
with too low visibility leads to reduced performance dur-
ing inference. As such we treat objects that are largely oc-
cluded, i.e. with less than 25% relative object visibility, as
background during training. However, this leads to cases
where discriminative object portions are visible in the im-
age, yet are treated as background, as can be seen here. Fur-
ther investigation is required to consider the abundance of
features during training target sampling to overcome such
issues.

Figure 5 presents common error cases on LM-O, again
indicated with red and white circles. The top row displays
a false positive detection of the Holepunch on a toy car
with the same color and very similar material properties
as the object of interest. The middle row shows a similar
false-positive detection of the object Duck. In the bottom
row an example of Eggbox with an occlusion pattern that is
unlikely to be similarly sampled when randomizing object
placements using physical modelling is displayed. Since
it is unlikely that objects of roughly the same size end up
being stacked, these cases are not experienced during train-
ing [3].
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Figure 4. Error Cases on IC-BIN: Columns are, from left to right, input image, 2D detections and reprojected object mehses based on
the estimated poses. Each instance is indicated with a specific color. Green and blue bounding boxes correspond to estimates and ground
truth, respective. Errors are indicated with a red and white circle. Best viewed on screen.



Figure 5. Error Cases on LM-O: Columns are, from left to right, input image, 2D detections and reprojected object mehses based on the
estimated poses. Each instance is indicated with a specific color. Green and blue bounding boxes correspond to estimates and ground truth,
respective. Errors are indicated with a red and white circle. Best viewed on screen.


