
Full Contextual Attention for Multi-resolution Transformers in Semantic
Segmentation - Supplementary

1. Detailed Non Local Upsampling
In our approach we introduce the Non-Local Upsam-

pling (NLU) module which is used in place of conventional
upsampling operations which are based on local informa-
tion only (bilinear, deconvolution). The idea of the NLU is
to upsample the semantic features based on all the tokens
coming from the skip connection by using a MSA block in
the decoder.

The NLU module is detailed in Fig. 1. By using the
same blocks as in [5], the skip connection is embedded into
a query matrix Q ∈ R(4Np)×C while the keys and values
are computed from the semantic low resolution features:
K ∈ RNp×C and V ∈ RNp×C . The resulting attention ma-
trix is A ∈ R(4Np)×Np . To maintain the residual connec-
tion in the Transformer block, the low resolution features
are upsampled and a linear projection adapts the number of
channels before the sum. Then a Feed Forward (FF) layer
is also used. It is worth noting that a normalization layer is
included in both parts but omitted in the schema for clarity.
At the end, a concatenation of the skip-connection and the
upsampled semantic features ends the NLU the same way
than in the standard U-Net architectures.

2. GLAM-Transformer complexity
The computational complexity of an MSA module for

an image I divided into h×w patches has quadratic scaling
with respect to the image area hw. The windowed approach
W-MSA only depends on Nphw. The complexity of both
methods is given by:

Ω(MSA(I)) = 4hwc2 + 2(hw)2c (1)

Ω(W-MSA(I)) = 4hwc2 + 2Nphwc (2)

This makes the W-MSA scalable to a large number of
patches where the MSA can not be computed. With few
global tokens, the global attention adds only a few num-
bers of operations as it corresponds to adding Ng tokens
in each window and performing MSA over a sequence of
length Ng × Nr. It is also worth noting that the global to-
kens add a limited memory overhead as they do not require

any more activation saving and only add a few elements in
the attention matrix from each transformer block.

3. Detailed Experimental Settings
3.1. ADE20K and Cityscapes

For both ADE20K and Cityscapes, we implemented
GLAM into the mmseg codebase [3]. All experiments ran
on 8 Tesla V100 GPUs with 32GB and a batch size of
16 using data augmentation from the mmseg framework :
random horizontal flipping, random re-scaling within ra-
tio range [0.5, 2.0] and random photometric distortion.
GLAM is implemented into the Swin and Swin-Unet mod-
els. Therefore, we were able to use the pre-trained weights
from the respective models on ImageNet-1k [4]. For the
case of the Swin-Unet backbone, we keep the same strat-
egy as in [1] and duplicates symmetrically the encoder’s
weights to the decoder before fine-tuning. The added NLU
and G-MSA modules could not benefit from this strong
pre-training and their parameters were initialized randomly.
Thanks to their integration into the overall architecture and
the limited parameter increase they represent, this did not
impact the good performances of the GLAM models. Com-
plete pre-training on ImageNet of the GLAM backbones
may however lead to even higher scores. The chosen op-
timizer is Adam with weigh decay of 0.01 and a polyno-
mial learning rate scheduler starting from 0.00006 and with
a factor of 1.0. The images in train are cropped at a size of
512 × 512 for ADE20K and 768 × 768 for Cityscapes. In
validation the complete image is provided.

3.2. Synapse

Synapse is a medical image dataset composed of abdom-
inal CT-scans. Thus, the models aren’t pretrained on Ima-
geNet as for ADE20K or Cityscapes. However, we inte-
grated our experiments in the nnUnet framework that inte-
grates an efficient training procedure. We follow the nn-
Former model and used the SGD optimizer with an initial
learning rate of 0.01. We employ a polynomial learning
rate scheduler and a weight decay of 3e-5. The loss func-
tion is a combination of the cross entropy and dice. Simi-
larly than nnFormer, the numbers of heads used in the en-
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Figure 1. Non-Local Upsampling The upsampling is processed window by window and is conceived as a super-resolution module where
the low resolution feature map in the decoder (red) are re-embedded based on the high resolution ones coming from the encoder (blue).
The patches are downsampled by a factor 2 before each hierarchy in the models. A given region from the decoder corresponds then to four
neighbouring windows in the feature map coming from the skip connection.

coder stages are [6, 12, 24, 48]. The training is performed
through 1000 epochs where each image is cropped at a size
of (128×128×64), as it is classically done for semantic seg-
mentation over large 3D medical images, and in validation,
we use a sliding window on the complete input volume.

4. Additional Results

ADE20K In this additional experiments we use Multi
Scales (MS) inference to evaluate the model and their
extended GLAM version on ADE20K. As shown in 1,
while MS inference improves the performances for all the
methods, the GLAM models still outperform their base-
lines. Indeed, in this configuration, GLAM-Swin-UNet
Base reach +1.55% on ADE20K and is still +0.93% higher
than Swin-UNet Base.

Cityscapes We provide the same analysis on Cityscapes and
compare the performances of Sinw-Unet Tiny and GLAM-
Swin-Unet Tiny with and without MS inference as reported
in 2. Again, GLAM-Swin-Unet Tiny outperforms Swin-
Unet Tiny by 1% mIoU when trained over 40k epochs us-
ing MS inference. Moreover, we also give complementary
results to the ones reported in the Tables 1 and 2 of the
main paper by providing performances with both models
trained through 160k iterations. As can be seen in 2, the
better performances of the GLAM model are stable as the
GLAM-Swin-Unet outperfoms its baseline by 0.80% mIoU
and 1.09% mIoU with respctively SS and MS inference
when trained through 160k epochs.

Synapse To explore more in depth the performance gain
brought out by GLAM in Table 3 of the main paper, we
show in 3 the segmentation results for the different organs
of the dataset. The results are given for two recent base-
lines : TransUNet [2] and nnFormer [6] as well as for
GLAM-nnFormer. We use the publicly available implemen-

Table 1. GLAM Improvements with Multi Scale inference on
ADE20K. Performances are evaluated with respect to mIoU for
single scale inference (SS) and multiscales inference (MS).

Method Size SS MS
Swin-Unet [1] Tiny 42.75 44.72
GLAM-Swin-Unet Tiny 44.19 46.11
Swin-Unet [1] Base 47.85 49.72
GLAM-Swin-Unet Base 49.10 50.65

Table 2. GLAM Improvements with Multi Scale inference on
Cityscapes. Performances are evaluated with respect to mIoU for
single scale inference (SS) and multiscales inference (MS).

Method Size SS MS
Swin-Unet 40K [1] Tiny 77.43 78.56
GLAM-Swin-Unet 40K Tiny 78.29 79.56
Swin-Unet 160K [1] Tiny 79.98 80.90
GLAM-Swin-Unet 160K Tiny 80.78 81.99

tations provided by authors for both models1,2. The pro-
posed GLAM-nnFormer sensibly outperform both baselines
for all the classes except on the kidneys and the pancreas
where the result are close to the standard nnFormer.
Global token merging strategy. Here, we study the impor-
tance of how the global tokens between different windows
are merged: with the GLAM transformer, we use a global
self-attention (G-MSA) mechanism. We compare G-MSA
with an averaging and a random permutation strategy. We
can see in Table 4 that G-MSA is largely superior to the two
other options. This validates the usefulness of the G-MSA
step, which enable to indirectly model full range interac-
tions between visual region when applied after W-MSA.

5. Visualizations
ADE20K and Cityscapes In 3 and 4, we select some
representative images of the GLAM-Swin-Unet and

1https://github.com/Beckschen/TransUNet
2https://github.com/282857341/nnFormer

https://github.com/Beckschen/TransUNet
https://github.com/282857341/nnFormer


Table 3. Detailed per-organ comparison on the multi-organ Synapse dataset (Dice Score in %).

Methods Aotra Gallbladder Kidnery(L) Kidnery(R) Liver Pancreas Spleen Stomach
TransUNet [2] 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62
nnFormer [6] 89.81 63.18 93.78 94.58 96.19 83.16 95.76 86.14

GLAM-nnFormer 90.10 65.81 93.92 94.56 96.74 82.91 96.49 88.20

Table 4. Global token merging (tiny Swin-Unet, ADE20k).

Merging strategy mIoU
Random permutation 43.2
Average 43.7
G-MSA Merging 44.2

GLAM-Swin-Upernet. We provide attention maps for the
lowest hierarchy as well as the generated segmentation
map for the GLAM models. The attention is computed
with respect to a global token associated to the 7 × 7 blue
window plotted in the image (not to the scale). For the first
stage of the model, the patch size is 4× 4 patches and thus
the dimension of the window is 28 × 28 pixels. We see
that the model manages to detect long range interactions
directly in high resolution features map without being
limited by the small window size. Attention is paid mostly
between elements of the same class : vegetation in 3,
chairs or sky in 4 but also to salient elements such as cor-
ner or edges and semantic ones such as cars and pedestrians.

Figure 2. Global attention of GLAM compared to vanilla Swin on
ADE20K.

We provide another comparison on ADE20K in Fig. 2
below. Again, we can notice that Swin’s attention is lim-
ited to the small blue region. In contrast, GLAM can com-
pute a global attention map at high resolution thanks the G-
MSA module, providing both accurate spatial information
and global context.

Synapse In 5, we present more segmentation results on 3D
medical images and provide a qualitative analysis of the per-
formances between nnFormer and GLAM-nnFormer. The
GLAM model manages to retrieve better segmentation of
the liver (pink) and the stomach (purple). The memory ef-
fect of the global tokens manage to limit the error due to the
inference on 3D crops which is well illustrated on the liver
reconstruction.
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Figure 3. Qualitative results of GLAM incorporated to Swin-upernet on Cityscapes For each scene, we show from top-left to bottom-
right : the image, the global attention map with respect to the blue window, the ground truth and the predicted segmentation.



Figure 4. Qualitative results of GLAM incorporated to Swin-UNet on ADE20K For each scene, we show from top-left to bottom-right
: the image, the global attention map with respect to the blue window, the ground truth and the predicted segmentation.



Figure 5. Qualitative results of GLAM Incorporated to nnFormer on Synapse. The obeserved organs are the liver (pink), the stomach
(purple), the aorta (cyan) and the spleen (blue).


