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supplementary material

1. Extended UVCGAN Ablation Studies

This appendix shows the impact of the UVC-
GAN generator, gradient penalty (GP), and self-
supervised generator pretraining (PT) on UVC-
GAN’s performance. summarizes these
findings. For each data set, the bottom half of the
table shows the UVCGAN performance with some
of its components disabled. For example, UVC-
GAN no GP shows the UVCGAN performance
without the gradient penalty term (but using a hy-
brid UNet-ViT generator and a self-supervised pre-
training). This table affords a few observations:
1. the addition of a hybrid UNet-ViT generator
alone typically produces a large degree of improve-
ment compared to CycleGAN, even in the absence
of the self-supervised pre-training and GP term; 2.
the self-supervised generator pre-training without
the GP term does not seem to improve the image-
to-image translation performance and sometimes
makes it worse; 3. the self-supervised pre-training
only helps when it is used in conjunction with the
GP.

Table 1. FID and KID scores. Lower is better. PT
stands for the self-supervised generator pre-training, and
GP means usage of the gradient penalty.
Selfie to Anime Anime to Selfie
FID KID(x100) FID KID (x100)
ACL-GAN | 99.3 3.22£0.26 128.6 3.49+0.33
Council GAN | 91.9 2.74+0.26 126.0 2.57+0.32
CycleGAN | 92.1 2.74+0.31 127.5 2.52+0.34
U-GATIT | 95.8 2.74+0.31 108.8 1.48+0.34
UVCGAN | 79.0 1.35+£0.20 122.8 2.33+0.38
UVCGANnoGP | 81.4 1.68+0.22 133.3 2.90+0.49
UVCGANnoPT | 80.9 1.78+0.20 134.0 2.98+0.49
UVCGANnoPTand GP | 81.6 1.754+0.25 140.6 3.53 £ 0.59
Male to Female Female to Male
FID KID(x100) FID KID (x100)
ACL-GAN| 9.4 058006 19.1 1.38%0.09
Council GAN | 10.4 0.74£0.08 241 1.79=£0.10
CycleGAN | 152 1.20+0.11 22.2 1.74+0.11
U-GALIT | 24.1 220+0.12 155 0.94+0.07
UVCGAN | 9.6 0.68+0.07 13.9 0.91+0.08
UVCGANnoGP | 14.1 122+0.10 204 1.61£0.11
UVCGANnoPT | 11.0 0.85+0.09 14.7 0.98+0.08
UVCGANnoPTandGP | 144 1.26+0.10 199 1.55+0.11
Remove Glasses Add Glasses
FID KID (x100) FID KID (x100)
ACL-GAN | 16.7 0.70£0.06 20.1 1.35+0.14
Council GAN | 37.2 3.67+0.22 19.5 1.33+0.13
CycleGAN | 242 1.87+0.17 19.8 1.36+0.12
U-GALIT | 23.3 1.69+0.14 190 1.08£0.10
UVCGAN | 14.4 0.68+£0.10 13.6 0.60+0.08
UVCGANnoGP | 19.2 128+0.15 187 1.14+0.12
UVCGANnoPT | 158 0.84+0.12 143 0.70£0.10
UVCGANnoPTandGP | 19.7 1.32+0.15 161 0.89+0.11

=

2. Hyperparameter Tuning for Other
Algorithms

This section summarizes the hyperparameter
tuning results for three benchmarking algorithms:
ACL-GAN, CycleGAN, and U-GAT-IT. We omit-



ted tuning for Council-GAN because it takes too
long to run (300 hours per translation).

Because none of the benchmarking algorithms
use any stablization techniques (such as the EMA
of network weight [5]) beyond shrinking learning
rate, we suspect the fluctuation may be at least par-
tially due to instability of the GAN training.

We only provide hyperparameter tuning results
for a data set or task if an algorithm did not work
on it. We skip hyperparameter tuning if either a pre-
trained model or a hyperparameter setup was pro-
vided by the author. In Table [2}f4] the best results
are marked in bold font. The default hyperparame-
ters are highlighted in gray.

ACL-GAN worked on all three data sets stud-
ied and detailed in this paper—but all for only one
direction: selfie-to-anime, male-to-female, and re-
move glasses. For the translation in the opposite
directions, we tune three parameters concerning the
focus loss: focus loss weight, focus upper, and fo-
cus lower. The results are summarized in Table 2]

FID \ KID(x100) \ FID \ KID(x100)
selfie-to-anime \ anime-to-selfie

2.724+0.29 | 127.5 | 2.52+0.34

gen. | Wt.
ResNet 51 921

ResNet | 10 | 93.4 | 2.96+0.27 | 129.4 | 2.914+0.39
UNet 511219 | 6.21+0.32 | 1343 | 2.96+0.30
UNet | 10 | 286.0 | 27.0£0.87 | 135.8 | 3.32£0.32

female-to-male

‘ ‘ male-to-female

ResNet 51 21.9 2.00£0.12 33.6 2.824+0.14
ResNet 10 | 15.2 | 1.294+0.11 | 22.2 | 1.74+0.11
UNet 5| 45.5 4.55 +0.17 50.8 4.86 +0.16
UNet 10 | 47.4 4.82+0.19 47.5 4.57+0.17
| |  remove glasses | add glasses
ResNet 5| 27.7 2.08 £0.16 26.0 1.77+£0.11
ResNet 10 | 24.2 | 1.87+£0.17 19.8 1.36 +£0.12
UNet 5| 32.2 2.524+0.19 37.3 2.90 +0.14
UNet 10 | 32.2 2.524+0.19 44.9 3.63 £0.20

Table 3. CycGAN hyperparameter tuning results.

CelebA image of width 178 and height 218 is re-
sized to have width 256 and height 313. As we did
for CycleGAN and UVCGAN, we take a random
256 x 256 crop from a training image and a central
256 x 256 crop from a test image.

U-GAT-IT studied the selfie-to-anime data set.
For the two CelebA data sets, we try three levels

task | weight | upper | lower | FID | KID(x100) of weight of cycle-consistency loss: (5, 10, and20)
3*anime-to-selfie o1 — = | 80 || 940088 and summarize the results in Table 4l
025 5 3] 2053 | 11.0£1.01
025 1| .05 2503 | 18.6+1.19
3*female-to-male 0] =] —] 460 | 3394013 FID | KID(x100) | FID | KID(x100)
.025 5 3| 191 | 1.38+0.09 weight male-to-female female-to-male
.05 5 3] 363 | 291£0.13
FTi— T } e T i ion 5] 39.2 | 3864015 | 45.1 | 4.04+0.16
05| 1 05| a6 | 2964017 10 | 24.1 | 2.20£0.12 | 15.5 | 0.94+0.07
.05 A1) 05| 201 | 1.35+0.14 20 | 32.1 | 3.09£0.16 | 47.5 | 442+£0.17
Table 2. ACL-GAN hyperparameter tuning results. remove glasses add glasses
We tune three hyperparameters related to the focus loss: 5 [ 320 | 2632015 | 500 | 5.08 £ 0.6
weight of the focus loss, focus upper, and focus lower. 10 23'3 1 .69 n 0' 14 19'0 1 .08 i 0' 10
20 | 36.1 | 3.13+0.19 | 36.1 | 2.67+0.13

CycleGAN did not work on any of the three data
sets. We search a grid on two hyperparameters:
type of generator (Gen.) and weight (Wt.) of cycle-
consistency loss. We also try two GAN modes: Is-
gan and wgangp. However, because CycleGAN did
not implement GP properly, wgangp did not work.
The results are summarized in Table 3

In addition to hyperparameter tuning for U-
GAT-IT, we also correct the aspect ratio problem
of U-GAT-IT in this revised version as the origi-
nal U-GAT-IT implementation cannot handle im-
ages with different height and width. We imple-
ment the rescaling in the preprocessing stage, so a

Table 4. U-GAT-IT hyperparameter tuning results.



3. More detail about the UNet-ViT Gen-
erator

A UNet-ViT generator consists of a UNet [6]
with a pixel-wise Vision Transformer (ViT) [4] at
the bottleneck (Figure [T). UNet’s encoding path
extracts features from the input via four layers of
convolution and downsampling. The features ex-
tracted at each layer are also passed to the corre-
sponding layers of the decoding path via the skip
connections, whereas the bottom-most features are
passed to the pixel-wise ViT (Figure [2)).

On UNet’s encoding path, the pre-processing
layer turns an image into a tensor with dimension
(wo, ho, fo). Each layer of the encoding path con-
sists of a basic and downsampling block. The ba-
sic block is composed primarily of two convolu-
tions, while the downsampling block has one con-
volution with stride 2. A pre-processed tensor will
have its width and height halved at each downsam-
pling block, while the feature dimension doubles
at the last three downsampling blocks. Hence, the
output from the encoding path will have dimension
(w, h, f) = (wo/16,ho/16,8fp), and it forms the
input to the pixel-wise ViT bottleneck. Each layer
of the UNet decoding path consists of an upsam-
pling block followed by a basic block. A basic
block on the decoding path differs from one on the
encoding path in that it takes as input a concate-
nated tensor as input formed with the output from
the upsampling layer and the tensor from the cor-
responding skip connection of the encoding path.
The decoding path’s output will go through a post-
processing layer of 1 x 1 convolution with a sig-
moid activation to produce an image.

A pixel-wise ViT is composed primarily of a
stack of Transformer encoder blocks [3]]. To con-
struct an input to the stack, the ViT first flattens an
encoding along the spatial dimensions to form a se-
quence of transformer tokens. The token sequence
has length w x h, and each token in the sequence is a
vector of length f. It then concatenates each token
with its two-dimensional Fourier positional embed-
ding [1]] of dimension f, and linearly maps the re-
sult to have dimension f,. To improve the Trans-
former convergence, we adopt the rezero regular-

ization [2]] scheme and introduce a trainable scal-
ing parameter « that modulates the magnitudes of
the nontrivial branches of the residual blocks. The
Transformer stack output is linearly projected back
to have dimension f and unflattened to have width
w and h. In this study, we use input raw or cropped
images with wg = hg = 256 and set fy = 48.
Hence, we have w = h = 16 and f = 384. We
use 12 Transform encoder blocks in ViT and set
fps fo = f, and f, = 4f, for the feed-forward
network in each transformer encoder block.

4. Additional Sample Translations

We show a few more sample translations in Fig-

ures 3l to
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Figure 1. UNet ViT Generator with Full Details
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Figure 3. Additional Sample Translations: Selfie2Anime
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Figure 4. Additional Sample Translations: GenderSwap
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Figure 5. Additional Sample Translations: Eyeglasses
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