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1. Additional Tables

Table 1 and Table 2 summarize our results on the
Spleen Segmentation and ISIC 2017 skin cancer seg-
mentation datasets respectively.

Table 3 summarizes our results for the ablations con-
ducted to observe the effect of removing skip connec-
tions from the model architecture.

Table 4 summarizes the key differences of our Fully
Convolutional Transformer, compared to existing med-
ical image segmentation methods in literature.

Table 5 show our results on the ACDC Post-2017-
MICCALI online leaderboard. Compared to state-of-
the-art methods, our FCT gets the most well rounded
segmentation results while also getting the best results
for 6 out of 8 classes, and the best overall dice score
got from averaging all classes.

Method H Dice
Swin UNet [2] 90.7
UNETR [7] 94.1
SETR PUP [20] 94.9
TransUNet [3] 95.0
CoTr* [17] 94.6
CoTr [17] 95.4
FCTa24 95.9
FCTsg4 96.6

Table 1: Segmentation results on Spleen dataset.
CoTr* denotes the CoTr model without a CNN en-
coder. Swin UNet is trained on a 224 x 224 image size.

*Equal Contribution

Method H Dice ‘ Sensitivity
UNet [13] 76.81 | 72.14
FocusNet [9] 83.15 76.73
FocusNet++ [10] || 84.04 82.22
TransFuse [19] 81.78 80.18
TransUNet [3] 81.74 80.78
BAT [15] 84.86 | 84.62
FCTa24 85.46 84.02
FCTsg4 85.98 | 85.29

Table 2: Segmentation results on ISIC 2017 dataset.
All models are trained on image size 384 x 384 unless
specified differently. FCT394 and FCT3g4 contain 9.2
million parameters.

Avg. | RV | MYO | LV

Skip connections

81.90 | 82.33 | 75.23 | 88.14
84.06 | 83.69 | 78.19 | 90.31
89.45 | 88.22 | 86.18 | 93.94
90.74 | 89.68 | 87.77 | 94.78
92.11| 91.6 | 89.3 | 95.5

=W N = O

Table 3: Ablation study on the impact of the number of
skip connections on the ACDC dataset. FCTag4 (with
16.1 million parameters) is used for these ablations.



Method Positional Overlapping | MHSA Feature Process-
Encoding Patches Projection | ing

ViT [4] v/ X Linear Linear

R50 ViT [4] v X Linear Linear
TransUNet [3] v X Linear Linear
UNETR [7] v X Linear Linear
LeVit-UNet-384 [18] || v X Linear Linear
Swin UNet [2] v v Linear Linear
nnFormer [21] v v Linear Linear
D-Former [16] v v Linear Linear
FCT (Ours) I x | v | Conv | Wide-Focus

Table 4: Comparing representative works with the Fully Convolutional Transformer.

Method AVg.ED RVED MYOED LVED AVg.ES RVES MYOES LVES Overall
Avg.
Painchaud [12] 92.50 93.3 88.1 96.1 89.73 88.4 89.7 91.1 91.12
Zotti [22] 92.77 93.4 88.4 96.4 89.70 88.5 89.6 91.2 91.23
Baumgartuner [1] || 92.90 93.2 89.2 96.3 89.83 88.3 90.1 91.1 91.37
Khened [11] 92.93 93.5 88.9 96.4 | 89.80 87.9 89.8 91.7 | 91.37
Simantiris [14] 93.13 - - 96.7 90.70 - - 92.8 91.92
Girum [5] 93.37 - - - 90.50 - - - 91.93
Isensee [8] 94.07 94.6 89.6 96.7 91.83 | 90.4 91.9 92.8 92.95
Guo [6] 94.30 91.37 93.02

FCTs512 (Ours) [ 94.33 [ 95.0 [ 91.0 [ 97.0 [ 9167 [90.0 [92.0 [93.0 | 93.13

Table 5: Detailed top 8 results on the ACDC Post-2017-MICCALI online leaderboard. FCT515 (with 31.7 million
parameters) is used for this experiment. Avg. stands for the Average dice Coefficient. ED Stands for End-Diastolic
frames. ES stands for End-Systolic frames. - values are not available on the public leaderboard.
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