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1. Additional Tables
Table 1 and Table 2 summarize our results on the

Spleen Segmentation and ISIC 2017 skin cancer seg-
mentation datasets respectively.

Table 3 summarizes our results for the ablations con-
ducted to observe the effect of removing skip connec-
tions from the model architecture.

Table 4 summarizes the key differences of our Fully
Convolutional Transformer, compared to existing med-
ical image segmentation methods in literature.

Table 5 show our results on the ACDC Post-2017-
MICCAI online leaderboard. Compared to state-of-
the-art methods, our FCT gets the most well rounded
segmentation results while also getting the best results
for 6 out of 8 classes, and the best overall dice score
got from averaging all classes.

Method Dice
Swin UNet [2] 90.7
UNETR [7] 94.1
SETR PUP [20] 94.9
TransUNet [3] 95.0
CoTr∗ [17] 94.6
CoTr [17] 95.4
FCT224 95.9
FCT384 96.6

Table 1: Segmentation results on Spleen dataset.
CoTr∗ denotes the CoTr model without a CNN en-
coder. Swin UNet is trained on a 224 × 224 image size.

*Equal Contribution

Method Dice Sensitivity
UNet [13] 76.81 72.14
FocusNet [9] 83.15 76.73
FocusNet++ [10] 84.04 82.22
TransFuse [19] 81.78 80.18
TransUNet [3] 81.74 80.78
BAT [15] 84.86 84.62
FCT224 85.46 84.02
FCT384 85.98 85.29

Table 2: Segmentation results on ISIC 2017 dataset.
All models are trained on image size 384 × 384 unless
specified differently. FCT224 and FCT384 contain 9.2
million parameters.

Skip connections
Avg. RV MYO LV

0 81.90 82.33 75.23 88.14
1 84.06 83.69 78.19 90.31
2 89.45 88.22 86.18 93.94
3 90.74 89.68 87.77 94.78
4 92.11 91.6 89.3 95.5

Table 3: Ablation study on the impact of the number of
skip connections on the ACDC dataset. FCT224 (with
16.1 million parameters) is used for these ablations.



Method Positional
Encoding

Overlapping
Patches

MHSA
Projection

Feature Process-
ing

ViT [4] ✓ ✗ Linear Linear
R50 ViT [4] ✓ ✗ Linear Linear
TransUNet [3] ✓ ✗ Linear Linear
UNETR [7] ✓ ✗ Linear Linear
LeVit-UNet-384 [18] ✓ ✗ Linear Linear
Swin UNet [2] ✓ ✓ Linear Linear
nnFormer [21] ✓ ✓ Linear Linear
D-Former [16] ✓ ✓ Linear Linear
FCT (Ours) ✗ ✓ Conv Wide-Focus

Table 4: Comparing representative works with the Fully Convolutional Transformer.

Method Avg.ED RVED MYOED LVED Avg.ES RVES MYOES LVES Overall
Avg.

Painchaud [12] 92.50 93.3 88.1 96.1 89.73 88.4 89.7 91.1 91.12
Zotti [22] 92.77 93.4 88.4 96.4 89.70 88.5 89.6 91.2 91.23
Baumgartner [1] 92.90 93.2 89.2 96.3 89.83 88.3 90.1 91.1 91.37
Khened [11] 92.93 93.5 88.9 96.4 89.80 87.9 89.8 91.7 91.37
Simantiris [14] 93.13 - - 96.7 90.70 - - 92.8 91.92
Girum [5] 93.37 - - - 90.50 - - - 91.93
Isensee [8] 94.07 94.6 89.6 96.7 91.83 90.4 91.9 92.8 92.95
Guo [6] 94.30 - - - 91.37 - - - 93.02
FCT512 (Ours) 94.33 95.0 91.0 97.0 91.67 90.0 92.0 93.0 93.13

Table 5: Detailed top 8 results on the ACDC Post-2017-MICCAI online leaderboard. FCT512 (with 31.7 million
parameters) is used for this experiment. Avg. stands for the Average dice Coefficient. ED Stands for End-Diastolic
frames. ES stands for End-Systolic frames. - values are not available on the public leaderboard.
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