
Supplemental Materials

A. KNN Graph Experiments

In this section, we present results for experiments
on CIFAR-10 that use a KNN graph structure, as
discussed in Section 1, rather than the fully-connected
bipartite graph structure we propose. An important
benefit of the CNN2Transformer and CNN2GNN
methods is that learning can be done in an end-to-end
fashion even though there is an intermediate graph
construction step which is usually a non-differentiable
process, but is made differentiable in our approach
as described in Section 1. In these experiments, we
explore whether end-to-end learning is beneficial in
our setting.

We use a ResNet34 (without the classification layer)
pretrained on ImageNet as a feature extractor and
store these features. We then compute a KNN graph
in the following way:

Xemb = ϕ(X) ∈ Rn×F (18)

D = XembXT
emb ∈ Rn×n, (19)

where X is our original training data, Xemb is
the training data after feature extraction, F is the
embedding dimension, ϕ is the pretrained ResNet34,
and D is the similarity matrix where entry Dij gives
the similarity between examples i and j. We use D to
store the k-nearest neighbors for each example in an
adjacency list from which we construct a KNN graph,
G. We experiment with several choices of k as shown
in Table 7. We also test both one-hop and two-hop
neighborhoods. Note that in the Neighborhood Size
column in Table 7, [15, 5] means that we sample 15
one-hop neighbors and 5 two-hop neighbors. We
experiment with two models for the task of node
classification, GraphSAGE [3] and GAT [5]. For
GraphSAGE, we use the maxpooling aggregation
scheme. For GAT, we use multihead attention with 8
heads. During inference, we extract the features of the
new image, and place it into G by finding its k-nearest
training examples. We then do a forward pass through
the model to predict the label of the new image.

Table 7 shows the results of our experiments.
We find that end-to-end training is valuable as
both CNN2Transformer and CNN2GNN (results
shown in Table 2) significantly outperform methods
without end-to-end learning while using the same
backbone network. We find it interesting that in
the KNN graph setting, the maxpooling aggregation
method from GraphSAGE outperforms the attention
based aggregation in GAT, but both methods in
the KNN graph setting are outperformed by our

end-to-end method that uses maxpooling (results
shown in Table 1). This leads us to believe that the
benefit of end-to-end learning in the graph setting
is more important than the choice of aggregation
function. We point to the fact that attention-based
aggregation in CNN2Transformer and CNN2GNN
outperforms all other methods, but attention-based
aggregation without end-to-end learning performs
the worst for all experiments on CIFAR-10 with
a pretrained ResNet34 backbone. We hypothesize
that this is partly because the refinement of image
features by the backbone network enhances the ability
of the attention mechanism to focus on particular
neighborhood examples. However, we acknowledge
that the use of proxies and anchors also play a
role in the performance of CNN2Transformer and
CNN2GNN. We offer the following inequality as
an intuitive summary for the benefits of end-to-end
learning and attention in our experiments:

end-to-end learning with attention >

end-to-end learning without attention >

non-end-to-end learning without attention ≥
non-end-to-end learning with attention

(20)

Model k Neighborhood Size Accuracy

GraphSAGE [3]

5 [5] 88.96
10 [10] 88.98
15 [15] 88.51
15 [15,5] 88.56

GAT [5]

5 [5] 88.12
10 [10] 87.91
15 [15] 87.71
15 [15,5] 86.19

Table 7: Results for GAT and GraphSage models on
CIFAR-10. The experiments vary in how many closest
neighbors are used to construct the graph from the initial
image features and how to do neighborhood sampling (i.e.
one or two hop neighborhoods).

B. Relation to KNN

As |L| → n, where L is the set of anchors
and n is the number of training examples, our
approach mirrors an adapted version of the k-Nearest
Neighbors (KNN) algorithm. In the KNN algorithm,
new points are classified by computing the distance
to each point in the training set and then using
a majority vote of the k closest points. In
our setting, rather than having each anchor vote
directly with its class, each anchor votes with its
feature representation. Each feature representation

is weighted by its corresponding attention score
which is the analog of the distance metric in
KNN. Then this feature representation is used as
one information component in determining the final
class along with the weighted proxy feature, and
the image feature itself. By choosing |L| ≪ n,
we greatly reduce the computational complexity of
our method in comparison to KNN. Rather than
use the entire training set as anchors, we use an
embedding function, ϕ, to update the representation
of the selected anchors such that they act as good
representatives for all other possible anchors of their
class.

C. Varying Loss Function and Aggregation
Scheme

In this section, we present results on experiments
that vary the loss function and aggregation
scheme. The experiments are on CIFAR-10 for
CNN2Transformer with a ResNet34 backbone
pretrained on ImageNet. The overall loss function
presented in Equation 17 is a summation of multiple
terms which serve different purposes. Also, after
the forward propagation of images, anchors, and
proxies, our original method aggregates these three
features to produce a final representation for each
image. The details of the loss function can be found
in Section 3.4 and details of the CNN2Transformer
aggregation can be found in Section 3.3. Table 8
shows results for six experiments that vary different
components of the loss function and aggregation
scheme. All experiments outperform the baseline
(shown in Table 2). Each row in Table 2 represents
shows an experiment which omits certain loss terms
for backpropagation or omits certain representations
during aggregation.

Experiments 1 and 2 are the same as those
presented in Table 2 and Table 3 respectively. These
experiments use every term in the loss function but
vary which features are used to produce the final
representation for each image before the classification
layer. We see that these experiments outperform
all other tested variants. Surprisingly, we find that
excluding image features during aggregation yields
the best results.

Experiment 3 removes the Lce(P) term from the
loss function. This means that although proxies are
assigned a class label, they are not subjected to a hard
classification constraint. The result is that accuracy
decreases compared to Experiment 1 where proxies
are classified.

Experiment 4 also excludes the Lce(P) term from
the loss function along with the Lap term. This

means that proxies are not classified and there is also
no triplet loss computed between the anchors and
proxies. This experiment yields lower accuracy than
Experiment 3 meaning that removing the Lce(P) and
Lap terms hurts overall performance.

Experiment 5 excludes the Lce(P) and Lap terms
from the loss function and also uses just the proxy
representations during the aggregation step. This
means that proxy features are the only piece of
information used to represent each image before
classification. This experiment performs worse than
including the anchor and image features during
aggregation.

Experiment 6 excludes the Lce(P) and Lap terms
from the loss function and this time uses just the
anchor representations during the aggregation step.
This experiment performs better than using just the
proxy representations during the aggregation step.

Although we do not run every permutation of
loss terms and aggregation schemes, overall we find
that using all of the loss terms is most beneficial for
our method. We mostly experiment with altering
the loss terms related to the proxies and find that a
a hard classification of the proxies is beneficial for
downstream classification. Interestingly, we also find
that including image features during aggregation is
not necessary for good results and that in general,
using either or both of the anchors and proxies
during aggregation performs reasonably well (above
the baseline).

D. Training Models from Scratch

In this section, we show results on models trained
from scratch on the CIFAR-10 and CIFAR-100 datasets
[46] using a ResNet32 backbone [21]. The training
procedure is similar to that described in Section 4.1.
The changes are that we do not resize the images to
be compatible with networks pretrained on ImageNet
and we only use Random Crop for data augmentation.
Table 9 shows our results.

CNN2Transformer continues to outperform
baseline experiments for both CIFAR-10 and
CIFAR-100. Note that the CNN2Transformer
(NoImgAgg) model mirrors the setting of experiments
in Table 3 where image features are not aggregated
with anchors and proxies prior to classification.
This is equivalent to altering Equation 7 to
zout = ω (Lmha, Pmha).

CNN2GNN performs very well on CIFAR-10 but
achieves significantly lower results on CIFAR-100.
In the pretrained experiments shown in Table 2,
CNN2GNN performs reasonably well, although still
significantly below the baseline. However when

Experiment Lat Lpt Lap Lp Lce(X) Lce(L) Lce(P) Xemb Lmha Pmha Accuracy
1 x x x x x x x x x x 96.73
2 x x x x x x x x x 96.82
3 x x x x x x x x x 96.31
4 x x x x x x x x 96.16
5 x x x x x x 95.99
6 x x x x x x 96.11

Table 8: Experiments on CIFAR-10 for CNN2Transformer with a ResNet34 backbone pretrained on Imagenet. Each row is an
experiment that shows which loss terms were used for the run and which features were used during the aggregation step.

Model CIFAR-10 CIFAR-100

Baseline (ResNet32) 87.49 60.01
CNN2Transformer 90.31 61.15
CNN2Transformer (NoImgAgg) 89.82 60.34
CNN2GNN 91.59 12.33

Table 9: Models trained from scratch with a ResNet32
backbone.

(a) CNN2Transformer Epoch
5

(b) CNN2Transformer Epoch
100

(c) CNN2GNN Epoch 5 (d) CNN2GNN Epoch 100

Figure 7: Attention matrices for CIFAR-100 validation
examples with a ResNet32 backbone trained from scratch
where entry (i, j) shows the normalized attention scores
between images with label i and proxies with label j. Just
as in the pretrained experiments, CNN2GNN suffers from
proxy collapse. CNN2Transformer has collapsed proxies
early in training but learns to recover from this through
training.

training from scratch, CNN2GNN appears to get
stuck during training as we find both training and

validation accuracies are low. This is in part due
to severe proxy collapse which can be seen in
Figure 7. We hypothesize that CNN2GNN performs
much better with a pretrained network because the
image features are much better at the beginning of
training. However for a network trained from scratch,
both image and anchor features are not suited for
classification at the beginning of training. Thus the
model gets stuck in trying to jointly optimize the
images, anchors, and proxies. Interestingly, we find
that while both CNN2Transformer and CNN2GNN
have collapsed attention on proxies at the beginning
of training, as shown in Figure 7, CNN2Transformer is
able to recover from this while CNN2GNN is not. This
provides further evidence that the CNN2Transformer
attention mechanism is well suited to datasets with
both a small and large number of classes while
the CNN2GNN attention mechanism struggles on
datasets with a large number of classes.

