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1. Data
1.1. Synthetic Data Augmentation

Background augmentation. We source background
scenes (which are also used as ground truth during train-
ing and evaluation) from Vimeo-90k [6], which consists of
videos depicting every day activities in realistic settings,
often including people and other objects. We specifically
use the original test split of the dataset1, which contains se-
quences of seven (7) frames. The original clean frames are
used as ground truth for training and evaluation. To increase
variability of our synthetically generated data, we apply the
following data augmentation steps:

1. random homography transformation

2. center cropping to avoid any black borders caused by
(1).

3. random cropping of a 320 × 192 window, which are
the frame dimensions used during training.

4. random horizontal flip.

Foreground augmentation. The foreground fence ob-
structions are sourced from the De-fencing dataset [2],
which contains 545 training and 100 test images with
fences, along with corresponding binary masks as ground
truth for the fence segmentation. The variability of fences
in that dataset is limited, so we also apply various forms of
data augmentation on the fence image before fusing it with
the background. The types of foreground augmentation we
consider are:

1. random downsample of the fence image and segmen-
tation to create fences of different sizes and thickness.

2. random “outer” window crop to focus on a specific
subregion of the fence.

1http://data.csail.mit.edu/tofu/testset/vimeo_
test_clean.zip

3. color jitter to make the network more robust to differ-
ent fence appearances and lighting conditions.

4. random perspective distortion to obtain a fence se-
quence of length K.

5. center cropping to avoid black border effects from the
homographic distortion.

6. random blur with a gaussian kernel, to simulate defo-
cus aberrations.

Samples from our synthetic burst dataset are shown in Fig-
ure 1.

1.2. Real Burst Collection

Although our synthetic data are carefully generated and
exhibit considerable realism and diversity, they still cannot
fully capture the variability of motion, lighting, and obstruc-
tion patterns in scenes captured under realistic conditions,
so we collect set of controlled sequences, specifically for
quantitative evaluation. As mentioned in the main paper,
rather than collecting toy scenes as in Liu et al. [4], we cap-
ture outdoors real world hand-held sequences with a fence
and a corresponding background ground truth image with-
out a fence.

Data capture. We first capture one image without the
fence as the ground-truth frame, by bringing our camera to
the centre of a fence cell. We then fix the focus and expo-
sure on the background and move backwards from the fence
to capture 5 frames with fences. To minimize misalignment
caused by a change in perspective, we capture the first frame
as the key-frame, moving backwards along the capturing
direction. Then, we capture the remaining four frames by
intentionally jittering the camera around.

Keyframe - groundtruth alignment. After capturing the
real bursts, we need to align the ground-truth frame to the
obstruced key-frame. We do this following an approach

http://data.csail.mit.edu/tofu/testset/vimeo_test_clean.zip
http://data.csail.mit.edu/tofu/testset/vimeo_test_clean.zip


Figure 1: Examples of our synthetically generated data. The leftmost column shows the clean background frame and the next
5 columns show the background burst from Vimeo-90k [6], with overlaid fences from the De-fencing dataset [2].

combining SIFT feature extraction and RANSAC homog-
raphy estimation, similar to [1]. We start by computing
and matching SIFT features in the keyframe and respective
clean groundtruth shot. Since the resolution of the original
images is high, we extract 320 × 192 regions in a sliding
window fashion, and within such window, P , we compute
homography parameters using matched SIFT features in
crops of varying sizes: 1282, 2562, 5122, and 10242 (larger
crop sizes extend beyond the area of the original window).
The computed homography parameters are used for global
alignment of the keyframe and groundtruth frames, so we
have multiple homography “candidates” corresponding to
P . The motivation behind computing homographies at dif-
ferent scales is that different parts of a given window P
may require different homographies to be aligned more ac-

curately. We assign the best homography to each 128× 128
crop C inside P , by computing its respective SSIM score
with respect to its warped counterpart in the groundtruth
(we use the estimated fence masks to only include non-
obstructed areas in the SSIM computation). To ensure a
minimum level of quality, if there is at least one C inside P
with average SSIM ≤ 0.2 or PSNR ≤ 20, we discard P and
move to the next sliding window with stride 128. If there
are no “failed” crops, P slides to the next non-overlapping
position. In the end, we also manually filter out the crops
that are misaligned on and near the fences by visual com-
parison between input and aligned ground-truth. We also
manually filter out crops consisting of mostly homogeneous
regions (sky, land, sand), to promote diversity in our dataset.
Our final real burst dataset consists of 185 320× 192 input



bursts with corresponding ground truth key-frames from 29
scenes. Samples from our real burst dataset are shown in
Figure 3.

2. Task Specificity and Comparison with
SOLD [4]

(a) Keyframe (b) Output (original) (c) Improved output

Figure 2: Better data augmentation can make the fence seg-
mentation network more robust to varied types of fences,
thus improving the quality of frame inpainting on real se-
quences without the need for online finetuning.

One potential criticism towards our approach is our focus
on a specific type of obstruction (fences), and the fact that
we heavily rely on a specific prior (pre-trained fence seg-
mentation model), which can harm generalization to new
inputs, not commonsly seen in the training data. In com-
parison, SOLD [4] is a multi-frame approach can handle
various types of obstructions. However, SOLD is also lim-
ited when faced with atypical obstructions (e.g., fences), re-
quiring scene-specific, costly online optimization that takes
∼ 3 minutes, to achieve good results, making it impracti-
cal for real-world application. Our method trades-off gen-
erality for reconstruction and runtime performance (the lat-
ter is a feature missing from previous de-fencing works),
producing better de-fencing results than SOLD, at a frac-
tion of its runtime, without requiring scene-specific opti-
mization. Besides, de-fencing is an important problem in
its own right, with an extensive literature in computer vi-
sion (see Section 2.1 in the main paper). Finally, we can
make our method more robust to a broader variety of fences
(e.g., rhombic rotated fences, etc.) by improving our data
augmentation protocol. To showcase this, we have added
more scale, rotation, shape and color variation during the
training of the fence segmentation model. As shown in Fig-

ure 2, after adding these additional data augmentations, the
fence segmentation model can accurately segment fences
that are rotated, very thin fences, or have low contrast
with respect to the background, subsequently improving de-
fencing quality. Extending our method to handle other types
of obstructions (e.g., reflections), is also a direction we are
currently exploring.

3. Qualitative Results
Figure 4 shows additional qualitative results on se-

quences from our synthetically generated test set. Fig-
ure 5 shows results on real sequences, taken from previ-
ous works [7, 4]. We are also including some failure cases,
where the fence segmentation model encounters fences at
scales or shapes that are out of its training distribution, re-
sulting in low de-fencing quality. Finally, in Figure 6 we
compare results from our method and other baselines on ex-
amples from the real burst dataset we collected.
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Figure 3: Examples of real bursts we have collected. These are 320 × 192 crops from the original, high resolution images,
after alignment.



(a) Keyframe (b) LaMa [5] (c) SOLD [4] (d) FGVC [3] (e) Ours (f) Ground truth

Figure 4: De-fencing results on sequences from our synthetic data, and respective PSNR scores inside the fence mask
area. The leftmost column shows the obstructed keyframe, and the next 5 rows show its reconstructed version using various
baselines and our approach. Zoom in to notice differences in reconstructed frames.



Figure 5: De-fencing results on sequences from [7, 4]. From top to bottom: obstructed keyframe, reconstructed keyframe
using our approach, estimated fence segmentation using our U-net fence segmentation model. The second group of results
shows failure cases: when the fence obstruction is outside our training distribution (e.g., scale - very thin fences, irregular
fence pattern, such as vertical bars, extreme blur etc.) the fence segmentation estimation fails, affecting reconstruction quality.
Addressing unusual fence obstructions like these is our main focus for future work.



(a) Keyframe (b) LaMa [5] (c) SOLD [4] (d) FGVC [3] (e) Ours (f) Ground truth

Figure 6: Qualitative de-fencing results on real sequences, and respective PSNR scores inside the fence mask area. The
leftmost column shows the obstructed keyframe, and the next 5 rows show its reconstructed version using various baselines
and our approach. Zoom in to notice differences in reconstructed frames.


