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1. Other Brush Types
In the main paper (Section 4.2) we used a single brush

template, which was based on a quintic polynomial. Here,
we describe a more general approach.

1.1. Smoothstep Functions

In computer graphics, the need to transition smoothly
from one real number to another arises very frequently. For
this purpose, various functions are used, which take the
value 0 for x < 0, the value 1 for x > 1, and go from 0
to 1 in the interval [0, 1] in an continuously differentiable
increasing manner, with vanishing derivatives at 0 and 1.
In graphics, such a function is usually called smoothstep.
Refer to Inigo Quilez’s site [3] for a presentation of some
smoothstep functions.

1.2. Radially Symmetric Brushes

If f is a smoothstep function, then we can define a brush
template that is radially symmetric, as follows:

bT (x) = f (1− ∥x∥) (1)
Any function from [3] can be used. The brush we use for

our experiments is of this type. Besides smoothsteps, any
function f defined over [0, 1] that has value 0 at x = 0 and
a maximum value of 1 can be used in the equation above.

1.3. Vector Brushes

A possible extension we can make to our brush formu-
lation is to allow the brush template function to take vector
values instead of just scalars. Such an extension would al-
low to create brushes that twists the surface locally around
the interaction point.

2. Pre-training
During the initial training of the networks so that they

represent the unedited shapes we encountered a problem.

Figure 1: Sampled zero-level set of a neural network that
was unsuccessfully trained to represent a sphere.

Sometimes the training fails. Figure 1 shows the sampled
zero-level set of a network that was (unsuccessfully) trained
to represent a sphere. A sphere can actually be discerned.
Nevertheless, there also exists an outer shell. This situation
manifested for different shapes as well. We hypothesize that
this is due to the nature of the loss function, the network’s
size, and poor initialization of the network weights.

The loss function (equations 3-6) does not specify the
value the network should take anywhere other the zero-level
set. Depending on initialization, the network can take neg-
ative values outside the surface. The fact that we want the
network function to be positive outside the surface and neg-
ative inside is expressed in the loss function only through
the term for the normals and, hence, in a local fashion. Early



Figure 2: The results of PDF estimation for all the shapes in the dataset. For the top two rows our proposed algorithm was
used, while for the bottom two the naive approach. For an explanation of the figures refer to the main paper (Section 5.5).
Please zoom in for details.

(a) Dining chair
4dd46b9657c0e998b4d5420f7c27d2df

(b) Chair
02e76cb4f1039c482eb499cc8fbcd

(c) Armchair
c5d880efc887f6f4f9111ef49c078dbe

(d) Sofa
bcff6c5cb4127aa15e0ae65e074d3ee1

(e) Vase
13375f8fce3142e6597d391ab6fcc1

Figure 3: ShapeNet shapes used for surface editing comparisons. Beneath each caption the ShapeNet model ID of the
corresponding shape is written in italics.

in training, this normal term will lead to the network tak-
ing positive values outside the surface but only close to the
boundary. Far from the surface the network function con-
tinue to be negative. This creates the outer shell we see in
the figure. Once the shell is created, the eikonal term Leik

(equation 5) and the term that penalizes small values of the
network function Les (equation 6) lead to a local minimum.

The training that proceeds can be regarded through a
variational point of view. Leik acts as a constraint on the
network function forcing it to be an SDF, which means that
the outer shell created will change as a surface in a contin-
uous manner during gradient descent. The minimization of
Les requires that the area of the outer shell decreases and
so the shell shrinks. When the outer shell is close enough
to the surface of the shape which the network is trained to
represent the shell cannot shrink further because of the net-
work’s limited capacity. Between the shell’s surface and
the shape’s surface there exists a discontinuity in the SDF’s
gradient. This discontinuity, of course, exists even when the
shell is far from the shape, however when it gets close the

network’s gradient is required to change too abruptly which
is not possible for its size. Thus, the training is stuck at a
local minimum.

We notice that larger networks sizes and/or more com-
plex shapes help to avoid the issue. The solution we opted
for is pre-training the network. That is, before starting the
actual training we execute 100 iterations using the follow-
ing loss function:

Lpre = Eq

{∣∣fθ(x)− ∥x∥
∣∣} (2)

where θ is the parameter vector, fθ is the network func-
tion, and q is the uniform distribution in a bounding box.
This lead to the network function being positive and so
avoids the creation of the shell.

3. Additional PDF Estimation Results
In the main paper, we provided PDF Estimation results

only for the bunny and the sphere in the main paper (Sec-
tion 5.5). In Figure 2, we provide them for all the shapes in



Shape
Mean Chamfer Distance ×103 (↓)

Over whole surface Inside interaction area
Ours Naive Simple Mesh Ours Naive Simple Mesh

Dining chair 7.256 20.545 8.260 8.843 11.288 10.703
Chair 8.498 30.620 8.650 8.741 19.072 15.344
Armchair 14.152 19.433 14.311 5.085 10.942 23.654
Sofa 11.160 18.268 11.899 4.477 8.623 23.940
Vase 9.063 15.565 10.345 10.477 15.713 16.725
Average 10.026 20.8862 10.693 7.525 13.128 18.073

Table 1: Comparison of our editing method with and without model samples (Ours and Naive, respectively) and direct mesh
editing on a mesh with equivalent size (Simple Mesh). Chamfer distances are computed with 100000 points. The mean for
each shape is taken over 10 independent edits.

the dataset. Here, as well, it is clear the our proposed algo-
rithm produces a more uniform distribution than the naive
approach.

4. Additional Surface Editing Comparisons
We also run the surface editing comparison experiment

for five shapes from the ShapeNet dataset [1] shown in Fig-
ure 3. Since the ShapeNet meshes do not have adequately
high resolution to capture the desired edits accurately and
in order to have a fair comparison between the approaches,
we consider as ground truth a high resolution mesh con-
structed by Marching Cubes [2]. This is similar to the pro-
cess that we adopted for the Sphere and Torus shapes in the
experimental comparisons of the main paper. We follow the
same protocol of experimental comparisons as in Sec. 5.6
of the main paper and the results are reported in Table 1.
We observe that, once again, our method outperforms the
compared approaches consistently for all shapes and with
respect to both metrics used (i.e. Mean Chamfer Distance
over the whole surface and inside the interaction area).
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