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In this supplementary material, we give more explana-
tions for our proposed methods. We show emprically why
our fine context detector block helps in learning more fine
details about the shadow region. We then describe more
about the fusion block in FCSD-Net and illustrate it. We
give more details and reasons behind our design of FCSD-
Net and R2D. We also illustrate more results for compari-
son.

1. Fine Context Feature Learning

A generic ConvNet has a encoder-decoder architecture
which is an undercomplete type of architecture spatially
that learns more high level features when the network is
designed more deep. Overcomplete representations [3]
were initially introduced in signal processing as an alternate
method for signal representation. Overcomplete bases or
dictionaries were proposed where the number of basis func-
tions are more than the number of samples of input signal.
Overcomplete bases have a better flexibility at capturing the
structure of the data and so is more robust. In [8], over-
complete auto-encoders were observed to be better feature
extractors for denoising. In an overcomplete auto-encoder,
the number of neurons in the hidden layer is more than the
that of the initial layers. So typically, the dimensionality
of the representation in the deeper layers is more than that
of the input layer. In the deep learning era, the concept of
overcomplete representations has been under-explored [6].
In an overcomplete alternate convolutional network the in-
put image is taken to a higher dimension spatially. So, the
max-pooling layers in a typical ConvNet can be replaced
with upsampling layers to prevent the receptive field size to
increase in the deeper layers of the network.

Consider a configuration of two conv layers in succes-
sion where I be the input image, F1 and F2 be the feature
maps extracted from the conv layers 1 and 2, respectively.
Let the initial receptive field of the conv filter be k × k on
the image. Now, if there is a max-pooling layer present in
between the conv layers like in generic ConvNets, the recep-
tive field would become larger in the successive layers. The

receptive field size change due to max-pooling layer is de-
pendent on two variables- pooling coefficient and stride of
the pooling filter. Considering a default configuration (like
in most cases) where both pooling coefficient and stride is 2,
the receptive field of conv layer 2 (to which F1 is forwarded)
on the input image would be 2 × k × 2 × k. Similarly, the
receptive field of conv layer 3 (to which F2 is forwarded)
would be 4 × k × 4 × k. This increase in receptive field
can be generalized for the ith layer in an undercomplete
network as follows:

RF (w.r.t I) = 22∗(i−1) × k × k (1)

In an overcomplete ConvNet, we propose using an up-
sampling layer instead of the max-pooling layer. As the
upsampling layer actually works opposite to that of max-
pooling layer, the receptive field of conv layer 2 on the input
image now would be 1

2 ×k× 1
2 ×k. Similarly, the receptive

field of conv layer 3 now would be 1
4 × k× 1

4 × k. This in-
crease in receptive field can be generalized for the ith layer
in the overcomplete ConvNet as follows:

RF (w.r.t I) =

(
1

2

)2∗(i−1)

× k × k. (2)

This helps in an overcomplete network to learn more
low-level information like edges and other finer details bet-
ter. So in our work, the Fine Context Block has this alternate
ConvNet architecture to learn fine details of the shadow re-
gion.

2. FCSD-Net
In this section, we give more explanation about the fu-

sion block and give a justification for the design of FCD
architecture.

2.1. Fusion Block

The fusion block in FCSD-Net is used to fuse the fea-
tures from the FCD and CCD blocks. Fusion block is illus-
trated in 1. The input to the fusion blocks are features F1 to



F6, DS1 to DS6 . In the fusion block, first we interpolate
all the feature maps to the same size as of the input image so
that the dimensions are consistent during fusion. After this
we concatenate all the feature maps and pass them through
a 1 × 1 conv layer. This output is forwarded to a sigmoid
activation to get the binary shadow map as output.
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Figure 1. The details of the fusion block found in FCSD-Net. Input
feature maps F1−F6 and DS1−DS6 are interpolated and passed
through a 1∗1 conv layer and then fused. It is then passed through
a conv layer followed by a sigmoid activation to get the prediction.

2.2. FCD architecture Design Justification

In the Fine Context Detector (FCD) block, we use four
convolutional blocks where we upsample the input features
at each block. Each conv block has a conv layer followed
by an upsampling layer and ReLU activation. The upsam-
pling layer used here is bilinear interpolation. We use four
conv blocks such that the final resolution of the feature map
at FCD block is 400× 400. This limit is based on trade-off
between performance and model complexity. We noticed
that the change in performance was not too affected after we
reached a resolution of 400 × 400. This observation could
be explained as with increase in resolution the complexity
of the network training gets hindered. We conducted exper-
iments on ISTD dataset to show how the number of conv
blocks in FCD block affected the performance. These ob-
servations can be found in Table 1.

3. R2D
In this section, we give justification for using U-Net as

our restoration network. We also discuss on why we chose

No. of conv blocks 1 2 3 4 5
BER 2.10 1.85 1.77 1.71 1.71

Table 1. Change in performance with the number of conv blocks
in the FCD block. The performance saturates after 4 number of
conv blocks.

R1 and R2 from layers 2 and 5 respectively.

3.1. U-Net as R() - Justification

In R2D, we proposed using an U-Net [5] architecture for
our restoration network. We use a 5 layer deep U-Net which
has 5 conv blocks in its encoder and decoder. The conv
block in encoder has a conv layer followed by max-pooling,
batch normalization and ReLU activation. Each conv block
in decoder has a conv layer followed by an up-sampling
layer, batch normalization and ReLU activation. The num-
ber of filters in encoder are as follows: 32,64,128,256, and
512. The number of filters in the decoder are in reverse or-
der of the above.

The main reason we choose U-Net as our restoration net-
work because of its low complexity when compared to other
networks specifically designed for shadow removal. No-
table works like [1, 2, 4, 7] provide methods and networks
specifically designed for shadow removal. However, using
those methods as our restoration network R() increases the
complexity of the whole framework as well as complicates
the optimization process. As the main objective of this work
is to perform shadow detection, we just use U-Net as R()
instead of the state of the art restoration networks as it is
itself capable of extracting the shadow features from the in-
put image as seen in Figure 7 of the main paper.

3.2. Choosing R1 and R2

In our proposed framework, we chose R1 and R2 from
the second and last layer of encoder in U-Net respectively.
We do not feed forward all the features from R() to D() as
it increases the complexity of network. The motivation is to
feed forward a good combination of both local and global
features of the shadow region to the detection network D().
We observe that features at layer 1 and 2 extract local fea-
tures while layers 3,4, and 5 extract global features. So we
choose R1 and R2 from layers 2 and 5 to get the abstract
local and global features from network R().

4. Performance Analysis and Comparison with
other methods

Although we use less extra images than MTMT-Net (we
used an extra of 1300 shadow free images while MTMT-
Net used 3472 real world images), we achieve better results.
Also, we note that adopting the semi-supervised strategy of
MTMT-Net for FCSD-Net should further enhance the per-
formance. We note that the ISTD dataset consists of a very
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Figure 2. Comparison of predictions of our proposed methods with leading shadow detection methods. The first and last columns corre-
spond to the input and ground-truth, respectively. Other columns correspond to the predictions obtained using different methods.

Figure 3. Our predictions for different backgrounds found in ISTD dataset.

limited number of shadow shapes (less than 10) and back-
ground. This makes the shadow detection task less chal-
lenging for any network trained on this dataset. So, it can
be seen that the improvements in the UCF and SBU datasets
are more when compared to the ISTD dataset as there are
still more features from varied shadow objects for R2D to
learn and leverage.

5. Additional Results

We illustrate more results for comparison in Fig 2. From
all the images, it can be observed that our method detects all
the fine details better than the other methods. We also vi-
sualize more predictions from ISTD dataset in Fig 3 where
our method gives a prediction as good as the ground truth.

6. Conclusion
R2D is a promising step towards achieving best detection

performances as a pre-trained R() can be directly plugged
into any D(), to improve its performance. Also, FSCD-Net
solves most confounding cases by focusing on local context
which we believe are important contributions to the shadow
detection literature.
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