
Supplementary: Pushing the Efficiency Limit Using Structured Sparse
Convolutions

Vinay Kumar Verma1* , Nikhil Mehta1* , Shijing Si3, Ricardo Henao1, Lawrence Carin1,2

1Duke University 2KAUST Saudi Arabia 3SEF, Shanghai International Studies University

1. Experimental Details

To show the efficacy of the proposed model we leverage
three standard architectures VGG-19 [5], ResNet-32 [1] and
ResNet-50 [1]. We use these architecture on the small scale
(CIFAR-10), medium scale (CIFAR-100 and Tiny-ImageNet)
and large scale (ImageNet) datasets. We evaluated VGG-19
and ResNet-32 architecture over the CIFAR-100, CIFAR-10
and Tiny-ImageNet dataset. Similar to GraSP [6], we dou-
bled the number of filters on each layer for the ResNet-32
architecture. We used the ResNet-50 architecture for the
ImageNet dataset. In our approach, the pruning ratio is con-
trolled by changing the hyperparameters p and g. We use the
expression for reduction in the number of parameters (given
in equation (10) of the main text) as the guiding principle to
create candidate values for hyperparameters p and g. From
these candidate values, we decide p and g by testing the
model on validation data (10% of the training data). Similar
to other pruning approaches [4, 2, 6, 3], we empirically ob-
served that the initial layers are more important compared
to the deeper layers, hence, high pruning on the initial lay-
ers showed significant degradation of model’s performance.
Moreover, the initial layers have fewer number of parameters
compared to the deep layers, and pruning these layers do not
help increase the overall pruning ratio.

1.1. CIFAR10 on VGG-19/ResNet-32 Architecture

Following [6], we use a modified low-resolution version
of VGG-19 [5] architecture for the CIFAR dataset. It con-
tains 3 × 3 convolutional filter across five blocks having
[64,128,256,512,512] number of filters. The deeper layers
lead to most of the compression as they contain more number
of the parameters compared to layers closer to the input. We
define the α% winning ticket as the architecture with only
α% parameters of the standard original architecture. On the
VGG-19 architecture (CIFAR-10 dataset) for the 10% win-
ning ticket, layers with number of filters [64,128,256,512]
have g = [1, 2, 4, 16] and p = [1, 2, 2, 2]. In particular, we
use the same set of g and p for layers with the same filter

*denotes equal contribution. Correspondence to
vinayugc@gmail.com, nick.mehta@duke.edu.

size, for instance in the 10% winning ticket, each layer of
size 128 has g = 2 and p = 2. Similarly for the 5%, we have
g = [1, 1, 4, 16], p = [1, 2, 4, 16], and for 2% winning ticket,
g = [1, 4, 8, 64] and p = [1, 4, 8, 25]. For the ResNet-32,
architecture we have three blocks of filter with [32, 64, 128]
number of filter. Table 1 summarizes the hyperparameters p
and g for three values of α for ResNet-32.

We trained the VGG-19 and ResNet-32 model with the
SGD optimizer for the 250 epoch with initial learning rate of
0.1 and weight decay 0.0001. The learning rate is decreased
by a factor 0.1× at the epoch 100, 150, and 200. For all the
experiment a batch size of 128 is used.

Winning Ticket p g Acc.
10% [2, 4, 15] [2, 4, 4] 93.3
5% [2, 8, 64] [2, 8, 32] 91.7
2% [16, 32, 64] [8, 32, 64] 88.4

Table 1. The value of p and g for the ResNet-32 architecture on the
CIFAR-10 dataset.

1.2. CIFAR100 on VGG-19/ResNet-32 Architecture

The hyperparameters p and g used for the CIFAR-10
dataset cannot be directly used for CIFAR-100 since the
last fully connected layer significantly increases the model
size. Therefore for the optimal performance we tune the
p and g value on the validation data. On the VGG-19 ar-
chitecture we use g = [1, 1, 2, 10] and p = [1, 2, 2, 15] for
the 10% winning ticket. Similarly, for the 5% and 2% win-
ning ticket we have g = [1, 1, 3, 30], p = [1, 2, 4, 30] and
g = [1, 4, 8, 64], p = [1, 4, 8, 25] respectively.

For the ResNet-32 architecture, we have three blocks of
[32, 64, 128] number of filters. The hyperparameters p and g
are given in table 2.

We trained the VGG-19 and ResNet-32 model with the
SGD optimizer for the 250 epoch with initial learning rate of
0.1 and weight decay 0.0001. The learning rate is decreased
by a factor 0.1× at the epoch 100, 150, and 200. For all the
experiment a batch size of 128 is used.



Winning Ticket p g Acc.
10% [2, 4, 16] [2, 4, 4] 71.1
5% [2, 6, 64] [2, 16, 32] 67.3
2% [16, 32, 64] [16, 64, 64] 63.0

Table 2. The value of p and g for the ResNet-32 architecture on the
CIFAR-100 dataset.

1.3. Tiny-ImageNet on ResNet-32/VGG-19 Archi-
tecture

Tiny-ImageNet is a medium scale dataset containing 200
classes of the ImageNet dataset of low resolution. Tiny-
ImageNet is trained on the VGG-19 architecture for the
350 epoch with the initial learning rate of 0.1 and weight
decay 0.0001. We decrease the learning rate by a factor
0.1× after epochs 150, 250 and 300. We use three pruning
ratio 90%, 95% and 98% for the VGG-19 architecture, how-
ever for the ResNet-32, pruning ratio 85%, 90% and 95%
is used to be consistent with the baselines. For the VGG-
19 architecture we use g = [1, 1, 2, 10], p = [1, 2, 2, 15],
g = [1, 1, 3, 35], p = [1, 2, 4, 35] and g = [1, 4, 8, 64], p =
[1, 4, 12, 40] for α equals 90%, 95% and 98% respectively.
Similarly for the ResNet-32 architecture to prune the model
85% we use g = [1, 2, 11], p = [1, 4, 10]. Also, for the 90%
and 95% pruning ration g = [2, 4, 16], p = [2, 4, 8] and
g = [2, 10, 64], p = [2, 16, 32] are used respectively.

1.4. ImageNet on ResNet-50 Architecture

For ImageNet, we use the ResNet-50 architecture with
two different values of α i.e. 40% and 20%. The model
is trained for 150 epochs similar to GraSP with an ini-
tial learning rate of 0.1 and weight decay 0.0001. We de-
crease the learning rate after every 50 epoch by a fac-
tor 0.1×. ResNet-50 contains 3 × 3 convolutional filter
and 1 × 1 convolutional filter. For the α = 40% win-
ning ticket, we use g = [1, 1, 4, 8], p = [1, 2, 2, 2] on
the layer with [64, 128, 256, 512] number of 3 × 3 filters.
In the ResNet-50 most of the layers contain 1 × 1 fil-
ter. We use the p = [1, 1, 2, 2, 2, 2] for layers containing
[64, 128, 256, 512, 1024, 2048] number of 1×1 filters. Simi-
larly for α = 20%, we use g = [1, 1, 4, 6], p = [1, 2, 4, 8] on
the 3× 3 filters and p = [1, 1, 4, 4, 8, 8] for the 1× 1 filter.

2. Sensitivity over p and g value
We discussed earlier that our model’s pruning can be con-

trolled by the hyperparameters p and g. In this section, we
show that the model performance is not extremely sensitive
to different values of p and g. We perform a study for dif-
ferent hyperparameters on the ResNet-32 architecture for
CIFAR-100 dataset. We use the same winning ticket (10%)
for the different candidate values of p and g and evaluate the
model’s performance. The results is shown in the table-3.

However, if the initial layers (layers close to the input)
are pruned excessively, the model performance degrades.
For example, see the last row in table 3. This observation is
similar to what has been observed in previous works [4, 2, 6,
3].

g p accuracy
[1, 6, 16] [2, 6, 6] 69.95
[2, 6, 15] [2, 3, 4] 69.97
[2, 4, 16] [2, 4, 5] 70.31
[1, 4, 15] [2, 16, 16] 69.85
[2, 4, 19] [2, 4, 4] 70.69
[4, 8, 8] [4, 8, 9] 69.45

Table 3. Ablation over the ResNet-32 architecture for the CIFAR-
100 dataset. We set the p and g value such that all the model has
same winning ticket (10%).

We can conclude that each layer has different importance
with respect to pruning; pruning more parameters from the
important layers degrade the performance. Therefore, select-
ing the RF (equation (10) in the main text) for each layer is
important.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[2] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, IJCAI’18, pages
2234–2240. AAAI Press, 2018.

[3] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter
pruning via geometric median for deep convolutional neural
networks acceleration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4340–
4349, 2019.

[4] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings of
the IEEE International Conference on Computer Vision, pages
1389–1397, 2017.

[5] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. Interna-
tional Conference on Learning Representations, 2014.

[6] Chaoqi Wang, Zhang, Guodong, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
ICLR, 2020.

2


