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1. Introduction
This supplementary represents the detailed implementa-

tion settings, computational complexity analysis in terms of
searching time, and analysis of generated CNN architecture
by proposed RNAS and state-of-the-art NAS approaches
AutoDeepLab and AutoMER.

1.1. Implementation Settings

To design the RNAS-MER, we use six layers with five
hidden nodes in the inner-level search space. The down-
sampling is done in the entire search space using stride 2.
Further, to search for the best possible architecture, we used
30 epochs and a batch size of four due to GPU memory
constraints. The main goal of the search is to learn the best
hyper-parameters α, β, and η. We used stochastic gradient
descent (SGD) optimizer with a momentum of 0.9, a co-
sine learning rate of 0.007, and a weight decay of 0.0003.
The batch size is set to 4 due to GPU memory constraints.
We used the reduction ratio of 16 for channel attention and
average pooling in spatial attention for spatiotemporal at-
tention. The entire search stage is accomplished in an end-
to-end manner. For training a model, similar settings of
searching like SGD optimizer with an initial learning rate
of 0.007, weight decay 3e−4, and momentum 0.9 are ini-
tialized. The batch size is set to 12, and epochs are set to
70 for training a model. The cross-entropy loss function is
used for loss optimization. We implement our model with
Pytorch 1.1.0 and run all experiments on an NVIDIA RTX
2080Ti GPU. We have normalized CASME-II (152), SMIC
(90), and SAMM (102) image sequences, respectively. For
the composite dataset, the image sequence length is fixed
to 120 for all samples. While we fixed the image reso-
lution to 80 × 80 for all datasets. Moreover, to evaluate
the performance of the proposed RNAS-MER with state-of-
the-art MER approaches, we adopted recognition accuracy,
unweighted average recall (UAR), and unweighted average
F1-score as evaluation metrics.

Method Pub-Year Search Time
AutoDeepLab (3D) CVPR-19 29:19:00
AutoMER (3D) TNNLS-21 18:56:18
RNAS-MER-1 Ablation 13:33:00
RNAS-MER-2 Ablation 07:05:30
RNAS-MER-3 Ablation 14:54:00
RNAS-MER-4 Ablation 16:13:30
RNAS-MER Proposed 16:04:30

Table 1: Computational Complexity Analysis of state-of-
the-art MER approaches and proposed RNAS-MER with its
four variants.

1.2. Computation Complexity

The computation complexity of the proposed RNAS-
MER, RNAS variants and state-of-the-art approaches are
compared in terms of the number of parameters, number
of flops, and memory needed for trained MER models in
the main draft. Here, we are providing the computational
complexity in terms of search time for the proposed RNAS,
variants of RNAS, and existing NAS-based methods: Au-
toDeepLab and AutoMER, over the Composite dataset with
four RTX 2080 GPUs. The search time (H:M:S) is pre-
sented in Table 1.

1.3. Architecture Analysis

The importance of the proposed RNAS inner- and outer-
level search space compared to existing NAS methods in
terms of generated architecture after NAS is demonstrated
in Figure 3. From Fig. 3, we observed some essential as-
pects of the proposed RNAS as follows:

1). In Figure 3(b), we can see that the resultant cell archi-
tecture of the AutoDeepLab is working with the previous to
previous cell’s resultant features only (None operation from
I-1). Similarly, in Figure 3(d), for AutoMER, the previous



to previous cell’s resultant features are not considered in
the cell structure (skip operation from I-2). However, from
Figure 3(f), it is clear that the cell structure generated after
RNAS uses both previous and previous to previous cells’
resultant features, which is one of the benefits of NAS algo-
rithms.

2). The cell structure of the RNAS utilizes most of the
hybrid operations instead of simple convolution operations,
which proved our hypothesis regarding the role of the com-
plementary hybrid features in MER.

3). From Figure 3, it is evident that the proposed RNAS
chooses the small-scaled filter size 1 × 1 × 1 along with
other convolutional with 3 × 3 × 3 and 5 × 5 × 5 filter
sizes to extract the minute but effective micro-expressive
variations. Therefore, based on the experimental results
and generated architecture, as shown in Figure 3, we can
conclude that our proposed RNAS algorithm gives the best
optimum architecture for MER.

We firmly confirm the release of all our codes and
searched architectures to ensure the re-producibility of
our results.


