
Toward Edge-Efficient Dense Predictions with Synergistic Multi-Task Neural
Architecture Search

Supplementary Material

EDNAS

Search
Algorithm

Edge
Latency

Estimator

Proxy
Multi-Task

Training
Hardware-Aware

Multi-Task
Objective

Edge-Friendly
Search Space

Edge-Efficient
Candidatesample

accuracy

latency

reward

Optimal Edge
Architecture

Final
Multi-Task

Training

Joint Absolute-
Relative Depth

Loss

nas
model
training
hardware

Figure 3: A system-level overview of our proposed methods. We leverage multi-objective, hardware-aware neural architecture search
to discover optimal neural components suitable for multi-task dense predictions, while simultaneously ensuring efficient edge inference.

A. Experimental details

Hyperparameters of NAS. We use a Regularized Evolu-
tion controller with a population size of 50, random ini-
tialization, uniform mutator, and a tournament sample size
of 10. We let the search run for about 2000 generations.
These parameters were simply chosen to fit our computa-
tional budget and were not tuned. During the search, we
train models for 5000 iterations as a proxy task to save com-
putation. The final models are trained for 20000 iterations
following AdaShare. For the β in the objective function
in Eq. 5, we use (p=0.0) to set up a hard constraint func-
tion and (q=-0.07) to promote Pareto optimality, following
MnasNet. We use wi,j=1.0 to equally weight all evalua-
tion metrics Mi,j of any task Ti in Eq. 6 and Eq. 7. These
can be adjusted to suit downstream applications. With 512
TPUv2 cores, our multi-trial search takes about 1.5 days
for Cityscapes and 3.5 days for NYUv2. Since EDNAS is
not constrained by the specific NAS algorithm, one can also
use a one-shot search with weight sharing [6, 63] instead
for better computational efficiency. Finally, Fig. 4 provides
a visual comparison of IBN and Fused-IBN blocks.

Seg Depth SN
Reference Model LCE L1 LRE LICS

Tab. 2: MT edge baseline 0.4 1.000 — —
Cityscapes EDNAS 0.4 1.000 — —

EDNAS+JAReD 0.5 0.950 0.050 —

Tab. 3: MT edge baseline 1.0 1.000 — 40.0
NYUv2 EDNAS 1.0 1.000 — 50.0

EDNAS+JAReD 1.0 0.999 0.001 60.0

Table 8: Final loss weights. This table specifies the per-task
loss weights for models trained on 2-task Cityscapes and 3-task
NYUv2. “SN” stands for surface normal estimation.

Task Loss and Weighting. Following AdaShare [53], we
use Cross-Entropy loss LCE to train semantic segmenta-
tion, L1 loss for the base training of monocular depth es-
timation, and the inverse of cosine similarity loss LICS

for surface normal prediction. Our JAReD loss also in-
cludes a weighted mean relative error component LRE as
specified in Eq. 8 We manually tune the loss weights to
avoid ineffective weighting interfering with the evaluation
of NAS-found architectures, using two guidelines: (1) We
set task weights so that our MT edge baseline best matches

Loss weight Seg Depth Avg
Method LCE L1 LRE mIoU PAcc AbsE RelE ∆TS ∆TD ∆T

Single-task seg 1.000 0.000 0.000 40.04 88.68 — — — — —
Single-task depth 0.000 1.000 0.000 — — 0.0157 0.340 — — —
Multi-task seg-depth 0.500 1.000 0.000 38.64 88.49 0.0171 0.354 -1.9 -6.3 -4.1
Multi-task seg-depth 0.500 0.999 0.001 46.78 90.62 0.0149 0.323 +9.5 +5.1 +7.3
Multi-task seg-depth 0.500 0.990 0.010 46.83 90.56 0.0144 0.304 +9.5 +9.5 +9.5
Multi-task seg-depth 0.500 0.950 0.050 46.11 90.47 0.0143 0.281 +8.6 +13.3 +10.9
Multi-task seg-depth 0.500 0.900 0.010 46.41 90.56 0.0146 0.300 +9.0 +9.5 +9.3

Table 9: Impact of loss weighting

AdaShare’s (Sec. 4.1), then use similar weights for ED-
NAS. (2) For EDNAS+JAReD, we keep the λ in Eq. 8 small
to avoid overwhelming the L1 and other tasks such as seg-
mentation. Tab. 8 details the final weights of our main mod-
els, as presented in Tab. 2 and Tab. 3. In addition, Tab. 9
illustrates the impact of different loss weighting strategies
on the multi-task performance of segmentation and depth
prediction.

∆ Metrics for MTL Evaluation. Following the standard
metrics for evaluating multi-task learning [40, 53, 59], we
calculate the scores of multi-task learning relative to the
single-task performance. Specifically, given a multi-task
model a for evaluation, let Ti ∈ T be a task of interest
(e.g. semantic segmentation) and mij ∈ Mi be an evalu-
ation metric for task Ti (e.g. mIoU). Let m̂ij be the base-
line score of a corresponding singe-task model (e.g. single-
task segmentation mIoU). We define the per-metric relative
score ∆mij (e.g. ∆mIoU) of the multi-task model a with
regard to its baseline m̂ij as followed:

∆mij = (−1)lj
mij − m̂ij

m̂ij
∗ 100% (9)

with lj =

{
1 if lower is better for metric Mj

0 otherwise
(10)

We then define the per-task relative score ∆Ti (e.g. ∆Seg)
of any task Ti and the overall multi-task score ∆T of model
a respectively as:

∆Ti =
1

|Mi|

|Mi|∑
j=1

∆mij (11)

∆T =
1

|T |

|T |∑
i=1

∆Ti (12)

with |Mi| and |T | being the cardinality of the corresponding
metric set and task set respectively.

(a) Inverted Bottleneck (IBN)

(b) Fused-IBN

Figure 4: A visual comparison of the Inverted Bottleneck (IBN)
[48] and Fused-IBN [64, 67, 56] blocks.

B. Qualitative Results
Figure 5 presents some qualitative results of semantic

segmentation and depth estimation on CityScapes dataset

Input Image Ground Truth Single-Task Multi-Task EDNAS

Figure 5: Qualitative results for semantic segmentation (top) and depth estimation (bottom) on CityScapes dataset

