
Appendices

We first show RPG networks could be quantized with min-
imal accuracy drop for compression purpose in Section A.
We then provide a figure revealing log-linear DoF-accuracy
relationship in Section B. We also provide proof for the or-
thogonal proposition in the main paper (Section C). Finally,
we provide detailed comparison and discussion to a closely
related work HyperNetworks [22] in Section D.

Additionally, we provide the most important code to re-
produce the layer superposition experiments on ImageNet in
supplementary as a tgz file. The rest of code is also ready for
release, and will be released after additional internal review.

A. Quantize RPG

Quantization refers to techniques for performing compu-
tations and storing tensors at lower bitwidths than floating
point precision. Quantization can reduce model size with tiny
accuracy drop. Table 9 shows that with 8-bit quantization,
ResNet18-vanilla has an accuracy drop of 0.3 percentage
point, while our ResNet18-RPG has an accuracy drop of 0.1
percentage point. RPG models can be quantized for further
model size reduction with a negligible accuracy drop.

Table 9: RPG model can be quantized with very tiny accu-
racy drop. With 8-bit quantization on ImageNet, ResNet18-
vanilla has an accuracy drop of 0.3 percentage point, while
our ResNet18-RPG has an accuracy drop of 0.1 percentage
point.

# Params Acc before Acc after ↓ quantization Acc drop
R18-vanilla 11M 69.8 69.5 0.3
R18-RPG 5.6M 70.2 70.1 0.1

B. CIFAR100 Accuracy versus DoF

Fig.6 plots CIFAR100 classification accuracy versus
model DoF. We observe a similar log-linear relationship
as in ImageNet.

C. Proof to the Orthogonal Proposition

We provide proofs to the orthogonal proposition men-
tioned in Section 3 of the main paper. Suppose we have
two vectors fi = Aif , fj = Aif , where Ai, Aj are sampled
from the O(M) Haar distribution.

Proposition 1. E [〈fi, fj〉] = 0.
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↓

Figure 6: Log-linear DoF-accuracy relationship of CIFAR100
accuracy and model DoF on CIFAR100. RPG achieves the same
accuracy as vanilla ResNet with 50% DoF.
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D. Comparison to HyperNetworks

HyperNetworks [22] share similarity with RPG as both
methods reduce model DoF. Specifically, HyperNetworks
rely on learnable modules to generate network parameters.
We compare with them and report results in Table 10. On
CIFAR100 with the embedding dimension of 64 and the
same model size, HyperNetworks has 68x FLOPs as our
RPG, yet 10 percentage points lower than RPG in accuracy.

Table 10: RPG outperforms HyperNetworks [22] with same
DoF on CIFAR100. HyperNetworks has 68x FLOPs as our
RPG, yet 10 percentage points lower than RPG in accuracy.

model DoF FLOPs CIFAR100 Acc.
HyperNet [22] 632k 2.49G 61.3%
RPG 632k 36.7M 71.6%

RPG can be considered as an extreme and minimal ver-
sion of HyperNetworks, one without a network. However,
RPG’s unique design and implementation delivers the fol-
lowing advantages over HyperNetworks:

1. HyperNetworks add substantial FLOPs to the network
and render it less practical. Given a network architec-
ture, RPG adds minimal to no additional computation,
as the permutation and sign reflection can be efficiently
implemented. However, HyperNetworks use a weight
generation network to generate the primary network
weights. A hypernet mainly uses matrix multiplication
and introduces substantial FLOPs. In the table below,
we analyze FLOPs of HyperNetwork for ResNet18 with
the embedding dimension of 64. FLOPs of a vanilla-
Res18 for ImageNet (224 input size) and CIFAR100
(32 input size) are 1.8G and 36.7M, whereas the weight
generation part of the HyperNet-Res18 takes 2.45G
FLOPs. This means the weight generation FLOPs are
1.4 times of vanilla-Res18 for ImageNet and 67 times
of that of CIFAR100. Empirically, we find the train-
ing and inference time HyperNet-Res18 is around 70x
larger than vanilla-Res18.

2. HyperNetworks do not have an arbitrary DoF (number
of reduced parameters). RPG uses a model ring of a size
(model DoF) that can be arbitrarily determined. In Hy-
perNetworks, the weight generation network uses the
same hyper-weight and requires embedding to be of a
certain size so that the matrix multiplication can be used
for generating primary network weights. Therefore, the
model DoF or reduced number of parameters cannot be
arbitrarily determined. In other words, RPG decouples
the model DoF (actual parameters) and the network ar-
chitecture, while HyperNetworks have model DoF and

architecture tightly coupled together, a highly restrictive
limitation.

3. Weights generated by HyperNetworks may be coupled
and not optimized for different layers. HyperNetworks
use only one weight generation network parameter-
ized by hyper-weight to generate all primary network
weights. This may not be optimal as different layers of
the primary network may need different weight gener-
ation networks. Additionally, matrix multiplication is
used for generating weights, and the generated primary
network weights may be coupled. On the other hand,
RPG has destructive weight sharing, which improves
the network performance by decoupling cross-layer net-
work weights. We will add these results and discussions
in the revision to clarify the differences between RPG
and HyperNetworks.


