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1. Details of WSOD Models

Our object proposal generation strategy can be applied
to different WSOD methods to boost their detection per-
formance. In the main paper, we show two representative
WSOD models – the widely-used OICR [19] and the state-
of-the-art CASD [9]. Here, we highlight the main model-
ing elements of OICR and CASD. Additional details can be
found in [19, 9].

As mentioned in Sec. 3.4 of the main paper, we obtain
d-dimensional object proposal feature vectors Vt ∈ Rd×Mt

for each input image Xt, where Mt is the number of the
proposal bounding boxes associated with Xt. These ob-
ject features are fed into the detection head of OICR [19]
or CASD [9] to classify and localize objects. Both models
contain a core multiple instance detection network (MIL)
and P instance refinement classifiers.

1.1. Core MIL Head

As shown in Fig. 1, the core multiple instance detection
network conducts the image-level multiple instance clas-
sification supervised by image-level labels Y

(w)
t . In the

core multiple instance detection network, the object pro-
posal feature vectors Vt of image Xt are branched into
two parallel classification and detection streams to gener-
ate two matrices x(cls) and x(det) ∈ RC×Mt by two FC
layers, where C is number of classes in T . Then, x(cls)

passes through a softmax layer along the category direction
(column-wise), while x(det) passes through another soft-
max layer along the proposal direction (row-wise), leading
to σ(x(cls)) and σ(x(det)), respectively. The instance-level
classification score for the object proposals is computed as
the element-wise product x(0) = σ(x(cls))⊙ σ(x(det)). Fi-
nally, the image-level classification score for class c is ob-
tained as pc =

∑Mt

i=1 x
(0)
c,i . We train the core instance clas-

sifier using a multi-class cross-entropy loss Lmlc. By using
the instance-level classification scores x(0), we select pro-

posals as detected objects. However, the core MIL head
focuses on most discriminative object instances.

1.2. OICR

To address this issue, OICR [19] introduces multi-stage
instance refinement classifiers to refine the core instance
classifier. As shown in Fig. 1, Vt is fed into P refine-
ment instance classifiers. Each p-th refinement classifier
comprises of an FC and a softmax layers along the cate-
gory direction, and produces a proposal score matrix x(p) ∈
R(C+1)×Mt , where the (C + 1)-th category is the back-
ground class. We train the p-th refinement instance classi-
fier via a log loss Lp

ref supervised by instance-level pseudo-
labels, which are selected from the top-scoring proposals in
the previous stage.

The loss for training the OICR network Loicr is defined
as

Loicr = Lmlc + λd

P∑
p=1

Lp
ref , (1)

where λd is the trade-off hyperparameter.

1.3. CASD

To further improve OICR, CASD [9] employs an
attention-based feature learning method for WSOD model
training. In addition to the Loicr loss, CASD includes a pro-
posal bounding box smooth L1 regression loss Lp

reg for p-th
refinement instance classifier by following [23, 14].

To encourage consistent representation learning of the
same image under different transformations (horizontal flip-
ping and scaling), we consider the Input-wise CASD fol-
lowing [9]. For each image Xt, we construct a set of
images Xtr

t = {X(s1)
t ,X

(flip(s1))
t , . . . ,X

(sn)
t ,X

(flip(sn))
t },

where X
(si)
t is its scaled image at si scale, X

(flip(si))
t

is the horizontally flipped image of the scaled image,
and n is the number of scales. Then, by feeding the
set of images Xtr

t into the same feature extractor FE5
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Figure 1: The architecture of our main weakly-supervised object detection stage.

in the WSOD model, we obtain a set of image feature
maps Ftr

t = {F(s1)
t ,F

(flip(s1))
t , . . . ,F

(sn)
t ,F

(flip(sn))
t }. For

each object proposal r, we compute the proposal fea-
ture vectors cropped from Ftr

t , and use all proposal fea-
ture vectors to obtain a set of object proposal attention
maps Atr

r = {A(s1)
r ,A

(flip(s1))
r , . . . ,A

(sn)
r ,A

(flip(sn))
r } by

channel-wise average pooling and element-wise sigmoid
function. We use the aggregated attention maps AIW

r =
max(Atr

r ), where max(·) is the element-wise max opera-
tor, to update the feature extractor FE5 in the p-th refine-
ment step. During training, we add the Lp

IW loss, which is
an L2 loss between AIW

r and each object proposal attention
map in Atr

r .

To encourage balanced representation learning of the
same image produced at different feature extractor layers,
we consider the Layer-wise CASD following [9]. The
feature extractor FE5 consists of Q number of convolu-
tional blocks FE5 = {B1, . . . , BQ}. The original im-
age Xt is fed into each of them to output a set of feature
map FB

t = {FB1
t , . . . ,F

BQ

t }. For each object proposal
r, we compute the proposal feature vector in each block
and use all the feature vectors to obtain a set of object pro-
posal attention maps Abl

r = {AB1
r , . . . ,A

BQ
r }. Similarly to

Input-wise CASD, we obtain the aggregated attention maps
ALW

r = max(Abl
r ). To update the feature extractor FE5 in

the p-th refinement step, we add the Lp
LW loss, which is an

L2 loss between ALW
r and each object proposal attention

map in Abl
r .

The loss for training the CASD network Lcasd is defined

as

Lcasd = Lmlc+

P∑
p=1

(λdLp
ref +λgLp

reg +λiLp
IW +λiLp

LW),

(2)
where λd, λg , and λi are the trade-off hyperparameters. For
additional details please refer to [19, 9].

2. Benchmarks

We evaluate our method on five dual-domain im-
age benchmark pairs: SyntheticPizza10 [12] → Re-
alPizza10 [12], Clipart1K [10] → VOC2007 [4], Wa-
tercolor2K [10] → VOC2007-sub, Comic2K [10] →
VOC2007-sub, and Clipart1K → MS-COCO-sub [11]
datasets. Each synthetic pizza contains up to 10 toppings.
The total 16,340 SyntheticPizza10 images are split into
14,802 training and 1,538 testing. RealPizza10 is split
into 5,029 training and 552 testing images. Both Cli-
part1K and VOC2007 contain 20 object classes. Both Wa-
tercolor2K and Comic2K contain 6 classes: bike, bird,
car, cat, dog, and person, the subset of classes in the
VOC2007. The Watercolor2K and Comic2K domains are
split into two subsets: 1,000 training and 1,000 testing im-
ages. The VOC2007-sub dataset includes 3,487 training
and 3,457 testing images. The MS-COCO-sub domain in-
cludes 95,279 training images and 4,031 testing images.
Challenge of SyntheticPizza10 → RealPizza10 bench-
mark. One of our contributions is that we construct the
dual-domain benchmark SyntheticPizza10 → RealPizza10
for WSOD. Compared with existing WSOD benchmarks



(VOC2007 and MS-COCO), RealPizza10 is more challeng-
ing for the following reasons. First, there are more objects
per image. On RealPizza10 each image contains 20 objects
on average, while on VOC2007 there are 2 objects per im-
age on average. Second, there is strong variation in appear-
ance. For example, the toppings in Pizza images exhibit
complex changes in appearance. Third, there are layered
object occlusions due to the topping objects. Such diffi-
culty is further reflected in the low detection performance
of baselines on RealPizza10 (e.g., Faster R-CNN achieves
only 4.3% mAP on RealPizza10, while 22.8% mAP on
VOC2007 and 13.9% mAP on MS-COCO-sub, as shown
in Tables 1 and 2 in the main paper). We hope Pizza10 can
serve as a new WSOD benchmark.

3. Additional Implementation Details
Implementation Details. All models and experiments
were implemented in Pytorch. The VGG16 [17] and
ResNet-50 [6] models pre-trained on ImageNet [16] were
used as FSOD feature extractor and WSOD feature extrac-
tor. VGG16 was used as Faster R-CNN feature extractor
and ResNet-50 was used as Sparse DETR feature extractor.
Because VOC2007 and MS-COCO lack clean background,
we run experiments on Clipart1K → VOC2007, Water-
color2K → VOC2007-sub, Comic2K → VOC2007-sub,
and Clipart1K → MS-COCO-sub without the 3rd adapta-
tion step FSOD-3 on augmented intermediate domain G2 in
our warm-up stage. In the main stage, the maximum num-
ber of training iteration was set to be 100K for all target
domains.

Copy-Paste Augmentation. As stated in Sec. 3.3 of the
main paper, we employ an object-aware data augmenta-
tion method based on copy-paste [22] to map images Xg1

to Xg2 . For each image Xg1 , we randomly copy several
foreground object instances from G1, with resizing and flip-
ping transformations, and paste them onto the real-world
target background images from T to generate Xg2 . The
flipping transformation includes horizontal and vertical flip-
ping transformations. The resize ratio is a random value be-
tween 0.8 to 1.2. The PL step can be in principle performed
for K times to generate instance-level pseudo-annotations.
In our experiments, we found that running the PL step twice
has achieved satisfactory performance. After the second PL
step, we apply the copy-paste augmentation with resizing
and flipping transformations for the pseudo-labeled target
images. According to the statistic information of Clipart1k
→ VOC2007 reported in Table 1, for each class, there is a
maximum of two objects in an image. Therefore, we copy
each pseduo-labeled object and randomly paste it 0 or 1
time onto the original image. On SyntheticPizza10 → Re-
alPizza10, according to the statistic information reported in
Table 2, we copy each pseduo-labeled object and randomly

paste it maximum 20 times onto the original image. All the
pasted objects and original objects have no overlapping.

CycleGAN. We trained CycleGAN [24] with the learning
rate of 1.0 × 10−5 for the first ten epochs and a linear de-
caying rate to zero over the next ten epochs following [10]
to generate intermediate images. We followed the original
paper [24] for remaining hyperparameters.

Faster R-CNN. We trained Faster R-CNN [13] on images
of a single scale. The short edge of input images was re-
scaled to 600, and the longest image edge was capped to
1000. We employed a learning rate, which is the same as
the final learning rate for the previous step, to progressively
fine-tune Faster R-CNN on (1) a transfer-labeled intermedi-
ate domain G1, (2) augmented transfer-labeled intermediate
domain G2 and then on (3) the pseudo-labeled target domain
T and (4) augmented pseudo-labeled target domain T .

Sparse DETR. The number of object queries is 300 and
we only use 10% of the encoder tokens on all benchmarks.
We followed the original paper [15] for the other hyper-
parameters. Each adaptation step was conducted with the
learning rate equal to the final learning rate of the prior step.

OICR and CASD. We followed the original papers [19,
9] for the hyperparameters.

Object Proposals. The number of instances for each
class in SyntheticPizza10 → RealPizza10 and Clipart1K →
VOC2007 is unbalanced and the statistics information is re-
ported in Table 1 and Table 2, respectively. The statistics
information of object proposals mentioned in the main pa-
per is shown in Table 3.

Cost of Training and Computing Resources. We train
D2F2WOD based on Faster R-CNN on a Tesla K80 GPU.
As shown in Table 4, we have the following observations.
(1) The warm-up stage takes much less time than the main
stage, indicating our domain adaptation to be lightweight.
(2) Standard CycleGAN training brings in the most addi-
tional computation overhead.

4. Additional Main Results
In Sec. 4.1 of the main paper we show the main re-

sults based on mAP values. Here, we list the whole mAP
with per class AP values. Table 5a and Table 5b sum-
marize the detection results on Clipart1K → VOC2007
and SyntheticPizza10 → RealPizza10 based on Faster R-
CNN FSOD backbone, respectively. D2F2WOD incorpo-
rated with OICR is denoted as D2F2WODoicr, with CASD is



Table 1: Statistics of Clipart1k → VOC2007 (train+test): number of images (#img), number of instances (#ins), and relative size of
human-labeled object instances on average (%size).

Name Clipart VOC

#img #ins %size #img #ins %size

Aero 41 73 14.7 442 591 26.3
Bike 27 36 20.1 482 690 22.0
Bird 135 265 9.4 612 945 20.2
Boat 88 129 12.1 353 553 17.2
Bottle 60 121 3.5 456 974 5.8
Bus 20 21 31.7 360 442 28.9
Car 103 202 11.0 1434 2451 19.8
Cat 43 50 8.4 659 734 41.9
Chair 181 340 8.6 862 1554 12.2
Cow 30 46 19.1 268 503 18.4

Total

Name Clipart VOC

#img #ins %size #img #ins %size

Table 106 115 19.7 390 421 33.3
Dog 51 54 9.2 839 999 34.1
Horse 46 79 17.4 561 710 30.2
Mbike 16 17 51.2 467 664 28.3
Person 521 1185 14.5 4015 9218 16.5
Plant 100 178 5.6 469 994 11.6
Sheep 27 76 8.1 193 499 13.0
Sofa 42 52 19.1 452 487 35.6
Train 45 46 40.3 520 579 36.9
Tv 65 80 8.4 485 632 12.8

1000 3165 12.9 9963 24640 19.9

Table 2: Statistics of SyntheticPizza10 (train+test) → RealPizza10 (only test set is annotated, so here we report test statistic): number of
images (#img), number of instances (#ins), and relative size of human-labeled object instances on average (%size).

Dataset Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion Total

Synthetic
#img 3741 3894 3901 3729 3868 3725 3904 3638 3979 3931 16340
#ins 29113 31723 29336 29001 36846 36113 31853 28675 31374 29561 313595
%size 2.4 2.2 2.4 2.4 1.4 1.3 2.2 2.3 2.3 2.7 2.1

Real
#img 197 96 94 70 152 24 10 8 161 76 552
#ins 3638 1455 1239 841 1145 289 110 152 1697 706 11272
%size 1.3 1.0 1.0 0.6 1.4 1.8 1.5 0.9 1.3 1.2 1.2

Table 3: Statistical information of the number of object proposals per image generated by the Faster R-CNN backbone in source domains.

Datasets Min Max Mean Std

PASCAL VOC 2007 train 300.0 1800.0 437.3 195.5
PASCAL VOC 2007 test 300.0 1500.0 424.8 185.0
RealPizza10 2007 train 300.0 1800.0 441.0 225.7
RealPizza10 2007 test 300.0 1500.0 482.6 236.7

Table 4: Training time for different stages on Clipart1K → VOC2007 (Clip → VOC), SyntheticPizza10 → RealPizza10 (SPizza →
RPizza), Watercolor2K → VOC2007-sub (Water → VocS), and Comic2K → VOC2007-sub (Comi → VocS) based on Faster R-CNN
FSOD backbone. ‘-’ denotes that we run experiments without the 3rd adaptation step FSOD-3, since VOC2007 and MS-COCO lack clean
background.

Training time Dataset Warm-Up Stage Main Stage CycleGAN
Stage FSOD-1 FSOD-2 FSOD-3 FSOD-4 FSOD-5 CASD

hour

SPizza → RPizza 14 10 13 2 2 79 216
Clip → Voc 7 6 - 3 3 102 144

Water → VocS 8 8 - 2 2 81 144
Comi → VocS 4 4 - 8 8 81 144

denoted as D2F2WODcasd, and with CASD+W2N is denoted
as D2F2WODcasd+w2n. The results of our warm-up stage are
denoted as D2F2WODwarm-up.

The detection performance does not benefit from using
OICR or CASD twice (once for proposal and once for ob-
ject detection), since doing so does not improve the gener-
ated proposals. The result of training CASD two times is
denoted as CASD2. As shown in Table 5a, on Clipart1K

→ VOC2007, D2F2WODcasd reaches 64.8% mAP, outper-
forming the original CASD by 7.8% mAP, while CASD2

reaches 57.4% mAP, outperforming the original CASD by
0.4% mAP. The detection result of using OICR twice will be
the same as using OICR once, because OICR directly uses
the proposals produced by selective search without refine-
ment on their bounding boxes. D2F2WODcasd+w2n reaches
66.9% mAP, outperforming the original CASD+W2N by



1.5% mAP. This further validates that D2F2WOD is a gen-
eral framework that can be combined with different WSOD
methods to improve their object proposal generation and
thus overall performance.

5. Additional Ablation Study
In Sec. 4.2 of the main paper we show the ablation study

results based on the mAP values. Here, we list the whole
mAP values with per class AP values.

• Effectiveness of Progressive Adaptation. As shown
in Table 6, each adaptation step in our warm-up stage
is not only helpful in terms of mAP, but it also benefits
for each class.

• Impact of Adaptation Order. Table 7 shows that our
progressive adaptation order that gradually reduces do-
main gap achieves the best performance – it is better
to first fine-tune the FSOD on intermediate images or
pseudo-labeled images, and then fine-tune on the aug-
mented images.

• Generalizability of the Warm-up Stage across
FSODs. As shown in Table 8, our D2F2WODwarm-up
and D2F2WODcasd based on Sparse DETR yield 0.6%
and 1.1% improvement in terms of mAP, respectively,
compared with Faster R-CNN backbone.

• Main Stage Configurations. As shown in Table 9,
two key components of our method are both effec-
tive and complementary to each other. Note that the
current transformer-based detectors rely on relatively
large amounts of annotate data; therefore, we found
that it was difficult to train Sparse DETR on Cli-
part1K with only 500 training images; by contrast,
Sparse DETR worked reasonably well on Synthet-
icPizza10 with 14,802 training images. Accordingly,
for the experiment on the Clipart1K → VOC2007
datasets, we mainly focus on Faster R-CNN. We leave
the investigation of Sparse DETR on Clipart1K →
VOC2007 as interesting future work, by either explor-
ing additional synthetic data to increase the synthetic
training dataset size or leveraging more data-efficient
transformer-based detectors.

• Identifying Object Detection Errors. We use
TIDE [3] to analyse the classification, localization,
both Cls and Loc, duplicate detection, background,
and missed GT errors in DT+PL, CASD, and our
model. Each chart shows the relative percentage of
each type of error. As shown in Fig. 2, D2F2WOD ef-
fectively reduces the localization error compared with
other two baselines. Here classification error indi-
cates object localized correctly but misclassified; lo-
calization error indicates object classified correctly but

Figure 2: Summary of errors on DT+PL, CASD and our method.

mislocalized; both Cls and Loc error indicates ob-
ject misclassified and mislocalized; duplicate detec-
tion error indicates object matched with a GT which
has already matched with another higher confidence
scoring prediction; background error indicates back-
ground detected as foreground; missed GT error indi-
cates ground-truth that not matched with any predic-
tions.

6. Additional Qualitative Analysis
Fig. 3 shows the representative images generated by Cy-

cleGAN on different benchmarks.
Fig. 4 illustrates some examples used for FSOD-3 train-

ing on SyntheticPizza10 → RealPizza10.
Fig. 5 and Fig. 6 illustrate detection results produced by

our D2F2WOD and CASD on RealPizza10 and VOC2007
datasets, respectively. There, it can be observed that
D2F2WOD does not only locate most objects, but that it also
produces more accurate bounding boxes. Specifically, in the
RealPizza10 images it can be appreciated bounding boxes
provided by our method (left) closely align with the objects
of interest, while for CASD (right) bounding boxes are of-
ten imprecise (either wrong shape or big/small). Similar
observations can be made for VOC2007 where CASD often
fails to locate objects or produces spurious bounding boxes.

Fig. 7 illustrates some challenging cases on the Re-
alPizza10 dataset where the performance of both our
D2F2WOD and the baseline CASD still lags. We hypothe-
size this is because in these cases, the corresponding cat-
egories (e.g., bacon, broccoli and pineapple) have signifi-
cantly smaller number of training examples.



Table 5: Results (AP in %) for different methods on Clipart1K → VOC2007 and SyntheticPizza10 → RealPizza10. We denote as
Upper-Bound the FSOD (Faster R-CNN or Sparse DETR) results, trained and tested on fully-annotated target domain to indicate the weak
upper-bound performance of our methods. Our warm-up stage is compared with CD models and our main stage is compared with SD
models. The upper part shows the results using CD models. The lower part shows the results using SD methods. Faster R-CNN in CD
means we trained our network on fully-annotated source and test on fully-annotated target domains. The best and second best results for
D2F2WOD compared with baselines are shown in red and blue.

(a) Clipart1K → VOC2007.
Type Method mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Upper-Bound [13] 69.9 69.8 79.1 67.5 56.5 54.4 77.2 82.2 80.9 50.1 78.4 64.5 78.4 83.7 72.3 77.2 38.3 70.9 66.6 77.5 71.9

CD
Faster R-CNN [13] 22.8 10.7 39.7 30.5 8.6 19.3 27.4 48.0 4.5 23.7 21.2 7.9 19.0 21.9 21.5 45.0 17.4 16.1 22.5 25.5 25.0

DT+PL [10] 34.6 18.8 55.8 33.2 20.4 18.8 47.2 56.2 15.8 27.4 45.5 10.7 25.9 54.1 54.3 47.6 10.6 35.4 42.3 47.0 25.9
PADOD [7] 24.2 13.3 40.3 28.8 12.6 20.2 32.2 46.7 7.5 25.9 24.0 13.8 19.3 21.2 17.5 44.0 17.6 17.2 24.4 28.5 29.4

Ours D2F2WODwarm-up 37.3 20.7 60.8 37.2 19.4 25.0 51.1 59.7 17.2 30.4 44.4 17.3 27.4 55.8 56.8 47.6 12.9 38.4 45.5 50.3 27.6

SD

WSDDN [2] 34.8 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9
OICR [19] 41.2 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6
PCL [18] 43.5 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0

WeakRPN [20] 45.3 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0
C-MIL [21] 50.5 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5

WSOD2(+Reg) [23] 53.6 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8
Pred Net [1] 52.9 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4
C-MIDN [5] 52.6 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5

MIST(+Reg) [14] 54.9 68.8 77.7 57.0 27.7 28.9 69.1 74.5 67.0 32.1 73.2 48.1 45.2 54.4 73.7 35.0 29.3 64.1 53.8 65.3 65.2
CASD [9] 57.0 67.2 71.5 57.8 41.5 23.4 72.9 70.3 75.5 21.5 64.8 53.8 71.8 65.0 72.5 32.6 25.0 56.6 58.5 69.5 68.2
CASD2 57.4 56.1 64.6 61.4 60.9 35.1 59.9 76.9 56.6 27.8 73.6 51.2 60.1 70.5 72.5 34.4 54.0 70.5 45.1 53.1 63.7

CASD+W2N [8] 65.4 74.0 81.7 71.2 48.9 51.0 78.6 82.3 83.5 29.1 76.9 51.5 82.1 76.9 79.1 28.5 34.3 65.0 64.2 75.2 74.8

Ours
D2F2WODcasd 64.8 62.7 64.9 69.9 47.9 57.9 74.3 85.7 59.6 43.4 82.2 39.6 67.2 84.0 77.8 74.0 50.6 74.6 48.8 66.7 64.6

D2F2WODcasd+w2n 66.9 58.6 69.1 77.9 49.3 78.1 73.2 89.0 64.9 39.6 83.5 33.0 77.7 95.2 77.0 75.9 50.7 74.4 44.8 66.6 61.0

(b) SyntheticPizza10 → RealPizza10.
Type Method mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion

CD
Faster R-CNN [13] 4.3 12.1 0.4 9.6 5.0 3.4 0.3 1.0 1.0 9.7 0.9

DT+PL [10] 14.9 30.7 4.3 11.6 25.3 42.7 1.3 3.6 2.4 21.4 5.2
PADOD [7] 8.1 19.5 0.2 3.4 11.8 30.2 0.2 1.1 0.5 13.3 0.8

Ours D2F2WODwarm-up 17.9 31.0 8.3 11.8 28.1 45.5 0.8 9.8 9.8 21.5 12.7

SD
OICR [19] 4.7 0.2 1.3 4.5 0.1 0 8.8 19.4 11.0 1.0 0.8
CASD [9] 12.9 12.7 19.5 14.8 10.5 13.7 10.4 10.1 14.5 11.7 10.7

Ours D2F2WODcasd 25.1 43.9 35.1 14.9 27.3 41.8 9.2 12.5 8.5 28.4 29.2

Table 6: Effectiveness of progressive adaptation: each adaptation step in our warm-up stage is helpful not only in terms of mAP, but also
benefits for each class.

FSOD Step mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion

Faster R-CNN

FSOD-1 4.3 12.1 0.4 9.6 5.0 3.4 0.3 1.0 1.0 9.7 0.9
FSOD-2 9.7 22.3 0.8 9.6 14.5 33.2 0.8 0.7 0.8 13.4 1.0
FSOD-3 10.3 23.0 1.0 10.1 15.4 35.7 0.8 0.8 0.6 14.4 1.1
FSOD-4 15.0 28.7 4.6 11.0 22.2 39.9 9.3 1.8 9.6 16.6 6.3
FSOD-5 17.9 31.0 8.3 11.8 28.1 45.5 0.8 9.8 9.8 21.5 12.7

Sparse DETR

FSOD-1 3.7 10.0 0.2 0.8 20.2 0.7 0.2 0.4 0.6 1.0 2.6
FSOD-2 9 27.0 1.7 0.6 24.5 19.1 0.1 2.3 2.5 8.3 4.0
FSOD-3 10.3 30.40 0.9 1.2 28.1 27.7 0.0 1.2 1.3 9.2 2.5
FSOD-4 18.2 47.7 4.7 5.9 39.8 46.0 0.0 1.7 3.1 25.1 7.8
FSOD-5 18.5 48.3 6.0 5.3 43.0 43.1 0.1 1.4 2.4 26.1 9.2

Table 7: Impact of adaptation order (Faster R-CNN backbone).

Adaptation Domain mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion

S 4.3 12.1 0.4 9.6 5.0 3.4 0.3 1.0 1.0 9.7 0.9

S → G1 →G2 10.3 23.0 1.0 10.1 15.4 35.7 0.8 0.8 0.6 14.4 1.1

S → G2 →G1 5.9 5.8 1.1 9.7 6.9 20.4 0 2.3 0.5 9.1 3.2

G2 → T → Aug.T 17.9 31.0 8.3 11.8 28.1 45.5 0.8 9.8 9.8 21.5 12.7

G2 → Aug.T → T 17.3 32.6 6.3 8.3 28.4 47.3 0.6 4.9 10.4 22.4 11.3



Table 8: Generalizability of the warm-up stage across FSODs.

FSOD Stage mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion

Faster R-CNN
D2F2WODwarm-up 17.9 31.0 8.3 11.8 28.1 45.5 0.8 9.8 9.8 21.5 12.7
D2F2WODcasd 25.1 43.9 35.1 14.9 27.3 41.8 9.2 12.5 8.5 28.4 29.2

Sparse DETR
D2F2WODwarm-up 18.5 48.3 6.0 5.3 43.0 43.1 0.1 1.4 2.4 26.1 9.2
D2F2WODcasd 26.2 51.9 35.5 18.9 33.1 47.4 11.2 9.6 5.4 29.3 20.1

Table 9: Ablation study of D2F2WOD main configurations on (a) Clipart1K → VOC2007 (Faster R-CNN backbone), (b) SyntheticPizza10
→ RealPizza10 (Faster R-CNN backbone) and (c) SyntheticPizza10 → RealPizza10 (Sparse DETR backbone). “FE” and “OP” denote
the domain specific pre-trained feature extractor and weakly-supervised object proposal generator, respectively.

(a) Clipart1K → VOC2007 (Faster R-CNN backbone).

Type Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

SD OICR 41.2 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6

D2F2WODoicr

+FE 44.7 53.8 52.5 41.1 37.4 27.8 53.9 63.5 39.1 30.5 59.5 40.7 42.6 47.6 52.1 23.5 36.1 55.9 40.0 45.1 50.7
+OP 47.2 23.4 54.4 46.9 34.6 46.5 69.4 78.0 10.1 44.7 65.6 27.7 25.9 52.8 64.3 65.3 32.5 54.7 42.1 52.8 52.3

+FE+OP 52.7 39.1 60.6 56.2 37.4 48.0 67.8 81.0 18.6 51.8 67.5 38.1 31.3 72.0 67.8 70.2 40.0 60.6 40.9 56.4 49.3

SD CASD 57.0 67.2 71.5 57.8 41.5 23.4 72.9 70.3 75.5 21.5 64.8 53.8 71.8 65.0 72.5 32.6 25.0 56.6 58.5 69.5 68.2

D2F2WODcasd

+FE 60.0 51.0 71.1 72.1 38.1 27.5 76.1 71.6 74.0 27.2 64.3 58.8 81.6 88.1 71.0 63.1 19.5 53.2 58.7 69.4 64.0
+OP 60.1 38.3 67.6 63.2 45.4 62.0 77.7 88.9 24.1 56.3 76.9 44.9 41.4 76.8 77.4 75.1 42.2 68.6 52.4 62.2 61.4

+FE+OP 64.8 62.7 64.9 69.9 47.9 57.9 74.3 85.7 59.6 43.4 82.2 39.6 67.2 84.0 77.8 74.0 50.6 74.6 48.8 66.7 64.6

(b) SyntheticPizza10 → RealPizza10 (Faster R-CNN backbone).

Type Method mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomatoes Onion

SD OICR 4.7 0.2 1.3 4.5 0.1 0 8.8 19.4 11.0 1.0 0.8

D2F2WODoicr

+FE 8.5 4.4 12.5 12.2 7.2 6.1 7.4 8.6 13.2 5.1 7.9
+OP 12.6 23.0 18.5 8.5 14.7 20.8 5.0 2.3 3.9 13.9 15.8

+FE+OP 13.8 24.3 19.7 10.0 15.2 21.9 3.7 7.5 3.6 16.3 15.4

SD CASD 12.9 12.7 19.5 14.8 10.5 13.7 10.4 10.1 14.5 11.7 10.7

D2F2WODcasd

+FE 14.8 10.2 11.3 14.6 10.1 10.0 19.0 30.9 21.0 10.9 10.5
+OP 24.0 45.8 36.7 14.8 25.8 37.4 3.2 12.3 3.5 32.1 28.3

+FE+OP 25.1 43.9 35.1 15.0 27.3 41.8 9.2 12.5 8.5 28.4 29.2

(c) SyntheticPizza10 → RealPizza10 (Sparse DETR backbone).

Type Method mAP Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomatoes Onion

SD OICR 5.9 12.1 9.9 2.8 5.4 12.7 1.0 0.3 0.1 5.5 9.4

D2F2WODoicr

+FE 10.8 21.7 17.1 9.3 11.6 15.2 0.4 4.5 0.8 15.6 12.1
+OP 13.4 22.1 16.8 9.0 13.5 23.7 10.9 5.5 2.2 15.6 14.3

+FE+OP 15.4 28.0 13.2 9.5 21.5 24.1 8.0 14.0 7.7 19.6 8.3

SD CASD 13.4 25.2 17.0 8.3 14.9 21.0 10.0 5.9 0.5 18.0 12.8

D2F2WODcasd

+FE 15.8 26.7 22.1 14.3 16.6 20.2 5.4 9.5 5.8 20.6 17.1
+OP 25.1 44.5 35.0 14.6 28.7 46.2 8.6 8.5 3.8 31.7 29.1

+FE+OP 26.2 51.9 35.5 18.9 33.1 47.4 11.2 9.6 5.4 29.3 20.1
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Figure 3: Representative images generated by CycleGAN.

Figure 4: Representative images used for FSOD-3 training.
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Figure 5: Example of success cases for our D2F2WODcasd vs. CASD in the test set of RealPizza10 dataset. We only show instances with
scores over 0.3 to maintain visibility.
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Figure 6: Example of success cases for our D2F2WODcasd vs. CASD in the test set of VOC2007 dataset. We only show instances with
scores over 0.3 to maintain visibility.
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Figure 7: Challenging cases in the test set of Realpizza10 dataset where both our D2F2WODcasd and the baseline CASD fail. We hypothesize
this is because these three categories have significantly smaller number of training examples. We only show instances with scores over 0.3
to maintain visibility.
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