
Supplementary Material
“Closer Look at the Transferability of Adversarial Examples:

How They Fool Different Models Differently”

1. Details of datasets

In Table 1, we provide the details of the datasets we used
in the main paper.

Dataset Class num. Image size Train Test

Fashion-MNIST 10 (1,28,28) 60,000 10,000
CIFAR-10 10 (3,32,32) 50,000 10,000

STL-10 10 (3,96,96) 5,000 8,000

Table 1. Details of datasets we used in the main paper. Image size
represents (channel, height, width) of images.

2. Adversarial Transferability Analysis

In this section, we provide supplementary results for our
analysis of the class-aware transferability of AEs.

2.1. Details of evaluated models

All models were trained using the stochastic gradient de-
scent (SGD) optimizer with a momentum of 0.9 and weight
decay of 0.0005.

For Fashion-MNIST, we trained models at an initial
learning rate of 0.01, which decayed 0.1 times at the 20th

epoch with 40 epochs in total. Details of model architec-
tures of FC-2/-4 and Conv-2/-4 are described in Table 2.

For CIFAR-10 and STL-10, we trained models at an ini-
tial learning rate of 0.01, which decayed 0.1 times at the
50th epoch with 100 epochs in total. Additionally, we used
data augmentation techniques to train models for CIFAR-10
and STL-10 to prevent strong overfit.

2.2. Model Similarity Analysis

Here, we show the supplementary results of class-aware
transferability of AEs. The results for Fashion-MNIST,
CIFAR-10, and STL-10 are shown in Figure 1, Figure 2,
and Figure 3, respectively. These results include the analy-
sis of various models, which are not in the main paper. Fur-
thermore, the analysis of the AEs generated by Momentum
Iterative Method (MIM) [2] is added. We confirm the con-
sistency of our findings for various models and attacks: the

fact that AEs tend to cause same mistakes, but a non-trivial
proportion of different mistakes exist is consistent.

We also evaluated two optimization-based adversarial at-
tacks, CW [1] and Deepfool [7]. Figure 4 shows the re-
sults for CIFAR-10. Since these optimization-based attacks
try to find minimum perturbations that are enough to fool
the source model F1, they hardly transferred between mod-
els. Interestingly, AEs generated by the optimization-based
attacks do not transfer even to the source models at 80th

epochs. Therefore, fooled ratios were too small to analyze
the class-aware transferability of the AEs.

2.3. Correlation Between Decision Boundaries’ Dis-
tance and Class-aware Transferability

The correlations between Dist(F1, F2), which is the
quantitative measurement of the distance between models’
decision boundaries, and the fooled ratio in Figure 5a. We
confirmed that the distance metric of decision boundaries
Dist(F1, F2) is directly related to the non-target transfer-
ability, as stated by Tramer et al.[8]. In addition, the corre-
lations between Dist(F1, F2) and the same mistake ratio
for all evaluated models and adversarial attacks are shown
in Figure 5b. These results show that non-targeted transfer-
ability and same mistakes are strongly associated with each
other.

2.4. Perturbation Size Analysis

The class-aware transferability of AEs when the pertur-
bation size was gradually changed is shown in Figure 6a for
the ResNet-18 source model and Figure 6b for the VGG-16
source model.

2.5. Decision Boundary Analysis

The visualization of the decision boundary for several
different images is shown in Figure 7 for the ResNet-18
source model and Figure 8 for the VGG-16 source model.

2.6. Additional Adversarial Transferability Analy-
sis on FGVC-Aircraft dataset

We additionally analyze the class-aware transferability
of AEs generated for FGVC-Aircraft dataset [6] to under-



stand the effect of class similarity and the number of classes.
FGVC Aircraft dataset contains 10,000 images, which are
split into 6,667 images for train set and 3,333 images for
test set. It is composed of only images of aircrafts, which
are labeled hierarchically: For example, the label level of
“variant”, e.g. “Boeing 737-700”, has 100 classes which
are finest visually distinguishable classes. The label level of
“manufacturer”, e.g. “Boeing”, has 40 classes of different
manufacturers. We trained all models at the initial learn-
ing rate of 0.01, which decayed 0.1 times at the 100th and
150th epoch with 200 epochs in total.

Since FGVC-Aircraft contains only aircraft images, im-
ages for different classes are visually more similar than,
e.g., “cat” and “truck” images in CIFAR-10. Therefore, it
is more likely that AEs cause different mistakes unless the
AEs have a substantial effect on fooling models towards a
specific class.

Figure 9 shows the class-aware transferability of AEs
generated for FGVC-Aircraft (“variants”) dataset. Note that
if AEs fool target models towards random directions, the
proportion of same mistake ratio out of fooled ratio is 1%
for a 100-class dataset.

We observe that non-targeted attacks caused same mis-
takes at a high rate. On the other hand, targeted attacks did
not cause same mistakes as many as non-targeted attacks;
however, still the proportions of same mistake ratio out of
fooled ratio were more than 1%.

It is intriguing that, although FGVC-Aircraft (“variant”)
has 100 classes, the same mistake ratio is high with non-
targeted attacks. It indicates that the AEs generated by
non-targeted attacks had strong effects on fooling models
towards specific classes, which suggests the existence of
non-robust features of the specific classes.

For targeted attacks, although targeted attacks still cause
a moderate number of same mistakes, they are not as
much as non-targeted attacks. For example, the propor-
tions of same mistake ratio out of fooled ratio when {F1,
F2}={ResNet-18,VGG-16} were 9.4%, 6.0%, and 9.8% for
targeted FGM, PGD, and MIM, respectively (the leftmost
column of Figure 9).

To understand how different mistakes occur with the
FGVC-Aircraft dataset, we further analyzed different mis-
takes at a class-wise level (Figure 10). For non-targeted
FGM (Figure 10a), it is observed that different mistakes
tend to occur within the same “manufacturer”. It indicates
that in the different mistake cases in non-targeted AEs, the
non-robust features of a specific class were recognized as a
different but similar class. On the other hand, targeted FGM
(Figure 10b) caused different mistakes for other “manufac-
turers” more than non-targeted FGM. In general, targeted
attacks are harder to perform than non-targeted attacks since
targeted attacks are forced to aim at a specific class. There-
fore, we think that this difficulty of targeted attacks can re-

sult in targeted attacks generating AEs with model-specific
non-robust features for the source model, which are not
likely to be perceived similarly by a target model. How-
ever, the differences between the mechanism and nature of
targeted and non-targeted attacks are still not fully under-
stood, which should be future work.

3. Non-robust Feature Analysis

3.1. Theory: The Difference in Learned Features
Causes Different Behavior on Adversarial At-
tacks

In the paper, we showed that different models might clas-
sify AEs differently due to the different usage of non-robust
features. In this section, we show a mathematical exam-
ple of this phenomenon using a simple mathematical model
proposed by Tspiras et al. [9].

3.1.1 Setup

As in Tspiras et al. [9], we consider a binary classification
task in which the data consists of input-label pairs (x, y)
sampled from a distribution D as follows:

y
u.a.r∼ {−1, 1}, x1 =

{
+y w.p. p
−y w.p. 1− p

,

x2, ..., xd+1
i.i.d∼ N(ηy, 1),

where N(µ, σ2) is a normal distribution with mean µ and
variance σ2, and p ≤ 0.5. Features x include strongly corre-
lated feature x1 and weakly correlated features x2, ..., xd+1

with small coefficient η. Here, the features x2, ..., xd+1 are
non-robust to perturbations with size η.

3.1.2 Weakly-correlated features suffice standard clas-
sification accuracy

Although x1, ..., xd+1 only weakly correlate, and each can-
not be predictive individually, they can be used to acquire
good standard accuracy. As shown in [9], a simple linear
classifier

favg(x) := sign(wT
unifx),

where wunif :=

[
0,

1

d
, ...,

1

d

]



can achieve standard accuracy over 99% when η ≥ 3/
√
d

(e.g. if d=1000, η ≥ 0.095). Proof is shown below.

Pr [favg(x) = y] = Pr [sign(wunifx) = y]

= Pr

[
y

d

d∑
i=1

N (ηy, 1) > 0

]

= Pr

[
N

(
η,

1

d

)
> 0

]
> 99% (when η ≥ 3/

√
d)

This means that even when features are weakly correlated,
their collection could be predictable enough for classifica-
tion.

3.1.3 Different usage of weakly-correlated features can
cause different predictions

Next we think of classifiers fA, fB which have weights wA,
wB as below.

fA(x) := sign(wT
Ax),

where wA :=
2

d(d+ 1)
[0, 1, 2, ..., d]

fB(x) := sign(wT
Bx),

where wB :=
2

d(d+ 1)
[0, d, d− 1, ..., 1]

These classifiers only use the weakly-correlated features,
but they have a bias on weights, different from wunif . The
difference between these two classifiers is that the prefer-
ence for using weakly correlated features is the opposite.
These classifiers achieve a standard accuracy of over 99%

when η ≥
√

6(2d+1)
d(d+1) (e.g. if d=1000, η ≥ 0.11). The proof

for fA is shown below (the same calculation also proves for
fB).

Pr [fA(x) = y] = Pr [sign(wAx) = y]

= Pr

[
2y

d(d+ 1)

d∑
i=1

i ·N (ηy, 1) > 0

]

= Pr

[
N

(
η
d(d+ 1)

2
,
d(d+ 1)(2d+ 1)

6

)
> 0

]

> 99%

(
when η ≥

√
6(2d+ 1)

d(d+ 1)

)
Now we think of an adversarial attack that perturbs each
feature xi by a moderate ϵ. For instance, if ϵ = 2η, adver-
sary can shift each weakly-correlated feature towards −y.
Here, we consider the case in which only the first half of
the weakly-correlated features are perturbed by ϵ = 2η: we
consider perturbed features x′

2, ..., x
′
k+1 are sampled i.i.d.

from N(−ηy, 1), where k = d/2 (for simplicity, suppose
d is an even number and d ≫ 2). Then the probability of

fA correctly predicting y is over 90% when η ≥
√

6(2d+1)
d(d+1)

(e.g. if d=1000, η ≥ 0.11).

Pr
[
fA(x′) = y

]
= Pr

[
sign(wAx′) = y

]
= Pr

[
2y

d(d+ 1)

( k∑
i=1

i ·N (−ηy, 1)

+

2k∑
i=k+1

i ·N (ηy, 1)

)
> 0

]

= Pr

[
N

(
ηk2,

d(d+ 1)(2d+ 1)

6

)
> 0

]

= Pr

[
N

(
η
d2

4

√
6

d(d+ 1)(2d+ 1)
, 1

)
> 0

]

> 90%

(
when η ≥

√
6(2d+ 1)

d(d+ 1)

)

In the same way, the probability of fB correctly predict-

ing y is less than 10% when η ≥
√

6(2d+1)
d(d+1) (e.g. if d=1000,

η ≥ 0.11).

Pr
[
fB(x′) = y

]
= Pr

[
sign(wBx′) = y

]
= Pr

[
N

(
−η

d2

4

√
6

d(d+ 1)(2d+ 1)
, 1

)
> 0

]

< 10%

(
when η ≥

√
6(2d+ 1)

d(d+ 1)

)

Therefore, it is proved that there exists a case in which
the perturbed input x′ is correctly predicted by fA while
incorrectly predicted by fB . This analysis shows that how
each model puts weights on weakly-correlated features can
determine the transferability of adversarial examples. Simi-
larly, simply extending this analysis to a multi-class setting
can theoretically show that there is a possibility to attack
different models to cause different mistakes when the mod-
els use features differently.

3.2. Supplementary Results

Here, we provide supplementary results and details of
the non-robust feature analysis.

3.2.1 N-targeted attack

Figure 11 describes the difference between vanilla targeted
attack and the N-targeted attack. N-targeted attack aims to
fool multiple models towards each specified target class. It
simply adds up the gradients for all target models.

Table 3 shows the accuracy of models on the AEs gener-
ated by the N-targeted attack, which constructs non-robust
sets.



(a) Targeted attack (b) N-targeted attack (N=2)
Figure 11. Difference between (a) targeted attack and (b) proposed
N-targeted attack (N=2), which sums up all gradients for all target
models (G = G1 + G2) and aims to mislead model F1 towards
class ytar

1 and model F2 towards class ytar
2 .

3.2.2 Full Results and Optimized Hyperparameters

For CIFAR-10 and STL-10, we conducted a grid search to
obtain the best hyperparameters for training models on the
constructed non-robust sets. The grid search area of hy-
perparameters is shown in Figure 12. Initial learning rate,
batch size, and level of data augmentation were optimized.
The results and corresponding hyperparameters are shown
in Figure 4, Figure 5, and Figure 6 for Fashion-MNIST,
CIFAR-10, and STL-10, respectively.

3.2.3 Accuracy Curves

Train and test accuracy curves for training models on the
constructed non-robust sets are shown in Figure 13 (CIFAR-
10). Note that train accuracy represents accuracy on the
constructed non-robust sets, which seem completely misla-
beled for humans, and test accuracy represents accuracy on
the original test set that is correctly labeled.

Following the experiment from Ilyas et al. [4], the accu-
racy numbers reported correspond to the last iteration since
we cannot do meaningful early-stopping as the validation
set itself comes from the constructed non-robust set and not
from the true data distribution.

4. Potential Application of Our Findings
In this paper, we have mainly focused on the theoreti-

cal understanding of adversarial transferability. This section
lists some potential applications to use our main findings.

4.1. Attack-side perspective

Using the N-targeted attack concept is one potential ap-
plication. It can be used to attack systems with the primary
classifier model and an AE detection model. Experiments
showed that it might be possible to generate AEs with non-
robust features that are recognized by the primary classifier
but not by the AE detection model. Another potential ap-
plication of our paper is to generate transferable AEs. Our
paper suggests that AEs transfer when they have non-robust
features that DNNs commonly recognize. Therefore, the

promising direction to generate transferable AEs is to inves-
tigate how to find “commonly perceived” non-robust fea-
tures by different DNNs.

4.2. Defense-side perspective

In general, our work further supports viewing adversar-
ial vulnerability as a feature learning problem, as asserted
by Ilyas et al. [4]: to reduce the adversarial vulnerability of
DNNs, it is necessary to restrict DNNs from learning non-
robust features that humans do not use. Our contribution
is to support this view by showing that non-robust features
can explain the transferability of AEs, even from the more
detailed perspective of class-aware transferability. One spe-
cific approach our paper suggests is to ensemble models: it
can alleviate the sensitivity to non-robust features learned
by a particular model and become only sensitive to the non-
robust features commonly learned by all models to be en-
sembled. In other words, the ensemble model may rely less
on specific non-robust features than a single model, which
can reduce adversarial vulnerability.



FC-2 FC-4 Conv-2 Conv-4

Linear: (784, 500)
ReLU

Linear: (500, 10)

Linear: (784, 500)
ReLU

Linear: (500, 200)
ReLU

Linear: (200, 100)
ReLU

Linear: (100, 10)

Conv2d: (1, 32, 3, 1)
ReLU

Conv2d: (32, 64, 3, 1)
ReLU

Maxpool
Linear: (9216, 128)

ReLU
Dropout

Linear: (128, 10)

Conv2d: (1, 32, 3, 1)
ReLU

Conv2d: (32, 64, 3, 1)
ReLU

Conv2d: (64, 128, 3, 1)
ReLU

Maxpool
Conv2d: (128, 128, 3, 1)

ReLU
Maxpool

Linear: (9216, 128)
ReLU

Dropout
Linear: (128, 10)

Table 2. Model architectures used for Fashion-MNIST. “Linear: (i, j)” is a fully connected layer with input size i and output size j.
“Conv2d: (Ci, Co, k, s)” is a convolution layer with input channel size Ci, output channel size Co, kernel size k, and stride s.

Figure 1. Class-aware transferability of adversarial attacks for Fashion-MNIST. We evaluate FGM [3], PGD [5], and MIM [2] with both
non-targeted and targeted objectives. AEs were l2-bounded by ϵ=1.0. Order of F2 is sorted by Dist(F1, F2) (1st row) for each F1 so
rightmost F2 was estimated to be more similar to F1.



Figure 2. Class-aware transferability of adversarial attacks for CIFAR-10. We evaluate FGM [3], PGD [5], and MIM [2] with both non-
targeted and targeted objectives. AEs were l2-bounded by ϵ=1.0. Order of F2 is sorted by Dist(F1, F2) (1st row) for each F1 so rightmost
F2 was estimated to be more similar to F1..

Dataset
Non-robust set
constructed for F1(X ′) = Y 1 F2(X ′) = Y 2

F1(X ′) = Y 1
& F2(X ′) = Y 2F1 F2

Fashion-MNIST
Conv-2 FC-2 92.3 60.0 60.0
Conv-2 Conv-2 (w:same) 94.6 93.8 93.0
FC-2 FC-2 (w:same) 58.7 58.5 46.0

CIFAR-10
ResNet-18 VGG-16 95.6 99.0 95.4
ResNet-18 ResNet-18 (w:same) 94.1 94.1 92.0
VGG-16 VGG-16 (w:same) 99.5 99.5 99.2

STL-10
ResNet-18 VGG-16 99.2 99.7 99.0
ResNet-18 ResNet-18 (w:same) 99.2 99.3 99.0
VGG-16 VGG-16 (w:same) 99.8 99.5 99.2

Table 3. Accuracy of models attacked using AEs X ′ generated by N-targeted attack, which constructs non-robust sets. Y 1 is target classes
for N-targeted attack for model F1, and Y 2 is that for model F2. These results are particularly interesting: in a white-box setting, it is
easy to generate AEs that lead to different sequences of classes Y 1 and Y 2 (success rate > 90% for CIFAR-10 and STL-10).



Figure 3. Class-aware transferability of adversarial attacks for STL-10. We evaluate FGM [3], PGD [5], and MIM [2] with both non-targeted
and targeted objectives. AEs were l2-bounded by ϵ=5.0. Order of F2 is sorted by Dist(F1, F2) (1st row) for each F1 so rightmost F2 was
estimated to be more similar to F1.

.

Dataset
Non-robust set
constructed for

Train
set

Trained
model

Test acc
(X,Y)

Initial
learning

rate

Batch
size

Data
aug.

Fashion-
MNIST

F1: Conv-2
F2: FC-2

D′
1 : (X ′, Y 1)

Conv-2 82.9

0.01 256 None

FC-2 62.1

D′
2 : (X ′, Y 2)

Conv-2 80.3
FC-2 75.4

F1: Conv-2
F2: Conv-2
(w:same)

D′
1 : (X ′, Y 1)

Conv-2 81.9
FC-2 66.2

D′
2 : (X ′, Y 2)

Conv-2 82.4
FC-2 67.1

F1: FC-2
F2: FC-2
(w:same)

D′
1 : (X ′, Y 1)

Conv-2 79.0
FC-2 80.5

D′
2 : (X ′, Y 2)

Conv-2 77.6
FC-2 81.4

Table 4. Non-robust features analysis for Fashion-MNIST. Initial learning rate, batch size, and data augmentations were fixed.



Figure 4. Class-aware transferability of optimization-based adversarial attacks for CIFAR-10. We evaluate CW [1] and Deepfool [7]
(Deepfool is defined only for a non-targeted objective). Order of F2 is sorted by Dist(F1, F2) (1st row) for each F1 so rightmost F2 was
estimated to be more similar to F1. Since these optimization-based attacks try to find minimum perturbations that are enough to fool the
source model F1, they hardly transfer between models.

.

Dataset
Non-robust set
constructed for

Train
set

Trained
model

Test acc
(X,Y)

Initial
learning

rate

Batch
size

Data
aug.

CIFAR-10

F1: ResNet-18
F2: VGG-16

D′
1 : (X ′, Y 1)

ResNet-18 51.3 0.005 128 Level 3
VGG-16 bn 53.9 0.001 128 Level 2

D′
2 : (X ′, Y 2)

ResNet-18 10.2 0.05 128 Level 1
VGG-16 bn 71.0 0.01 128 Level 1

F1: ResNet-18
F2: ResNet-18

(w:same)

D′
1 : (X ′, Y 1)

ResNet-18 50.1 0.05 128 Level 3
VGG-16 bn 54.1 0.005 256 Level 3

D′
2 : (X ′, Y 2)

ResNet-18 59.2 0.05 128 Level 1
VGG-16 bn 58.9 0.005 128 Level 3

F1: VGG-16
F2: VGG-16

(w:same)

D′
1 : (X ′, Y 1)

ResNet-18 63.5 0.05 128 Level 2
VGG-16 68.8 0.01 256 Level 3

D′
2 : (X ′, Y 2)

ResNet-18 11.0 0.01 128 Level 1
VGG-16 73.1 0.01 128 Level 1

Table 5. Non-robust features analysis for CIFAR-10. Optimized hyperparameters are shown besides the test accuracy.



(a) Correlation between Dist(F1, F2) and fooled ratio for CIFAR-10.

(b) Correlation between Dist(F1, F2) and same mistake ratio for CIFAR-10.

Figure 5. Correlations (1) between Dist(F1, F2) and fooled ratio ratio (Figure 5a), and (2) between Dist(F1, F2) and same mistake
(Figure 5b) for CIFAR-10. ResNet-18, ResNet-34, VGG-16, VGG-19, and DenseNet-121 source models (1st to 5th columns, respectively)
were attacked by non-targeted and targeted attack (1-2nd and 3-4th rows, respectively) using FGM and PGD (ten-step) (1,3rd and 2,4th
rows, respectively) methods. For each source model, the results of the corresponding seven target models (shown in Figure 2) are displayed
in a scatter plot.



(a) Class-aware transferability of AEs generated for ResNet-18 source model.

(b) Class-aware transferability of AEs generated for VGG-16 source model.

Figure 6. Class-aware transferability of AEs when the perturbation size ϵ is gradually changed (CIFAR-10). Here we show the results of
attacking the source model of ResNet-18 (Figure 6a) and VGG-16 (Figure 6b) with non-targeted attack (1st and 2nd rows) and targeted
attack (3rd and 4th rows), using FGM (1st and 3rd rows) and PGD (ten-step) (2nd and 4th rows) methods.



Figure 7. Visualization of decision boundaries when the source model is ResNet-18 (CIFAR-10). For each image, the first row shows
the classification results, where each color represents a certain class. The second row shows to which area the three cases of class-aware
transferability correspond. The distance from (0, 0) point to the closest decision boundary along the x-axis corresponds to the metric
d(F1, x) for each image x. The unit of each axis is 0.02 in l2 distance.



Figure 8. Visualization of decision boundaries when the source model is VGG-16 (CIFAR-10). For each image, the first row shows the
classification results, where each color represents a certain class. The second row shows to which area the three cases of class-aware
transferability correspond. The distance from (0, 0) point to the closest decision boundary along the x-axis corresponds to the metric
d(F1, x) for each image x. The unit of each axis is 0.02 in l2 distance.



Figure 9. Class-aware transferability of adversarial attacks for FGVC-Aircraft (“variant”). AEs were l2-bounded by ϵ=5.0. Order of F2 is
sorted by Dist(F1, F2) (1st row) for each F1 so rightmost F2 was estimated to be more similar to F1.



(a) Class-wise analysis of different mistakes caused by AEs generated by non-targeted FGM.

(b) Class-wise analysis of different mistakes caused by AEs generated by targeted FGM.

Figure 10. Class-wise analysis of “different mistakes” for FGVC-Aircraft (“variant”). The y-axis shows the classes to which the source
model F1 misclassified the AEs and the x-axis shows the classes to which the target model F2 misclassified the AEs. Each value represents
the number of each case. The source model F1 is ResNet-18 and the target model F2 is VGG-16. The classes are sorted by the “manufac-
turer” labels and the black lines separates “variant” classes for each “manufacturer”. For non-targeted FGM (Figure 10a), it is observed that
different mistakes tend to occur within the same “manufacturer”. On the other hand, targeted FGM (Figure 10b) caused different mistakes
for other “manufacturers” more than non-targeted FGM.



Figure 12. Grid search area to obtain hyperparameters for training models on the constructed non-robust sets (used for CIFAR-10 and
STL-10).

Dataset
Non-robust set
constructed for

Train
set

Trained
model

Test acc
(X,Y)

Initial
learning

rate

Batch
size

Data
aug.

STL-10

F1: ResNet-18
F2: VGG-16

D′
1 : (X ′, Y 1)

ResNet-18 24.0 0.001 256 Level 3
VGG-16 bn 25.4 0.001 256 Level 2

D′
2 : (X ′, Y 2)

ResNet-18 53.7 0.005 128 Level 1
VGG-16 bn 57.2 0.01 128 Level 2

F1: ResNet-18
F2: ResNet-18

(w:same)

D′
1 : (X ′, Y 1)

ResNet-18 18.6 0.001 256 Level 3
VGG-16 bn 20.1 0.001 256 Level 3

D′
2 : (X ′, Y 2)

ResNet-18 32.5 0.01 128 Level 1
VGG-16 bn 32.4 0.01 256 Level 1

F1: VGG-16
F2: VGG-16

(w:same)

D′
1 : (X ′, Y 1)

ResNet-18 38.5 0.001 256 Level 3
VGG-16 bn 51.8 0.01 256 Level 3

D′
2 : (X ′, Y 2)

ResNet-18 52.2 0.01 128 Level 2
VGG-16 bn 52.2 0.01 256 Level 2

Table 6. Non-robust features analysis for STL-10. Optimized hyperparameters are shown besides the test accuracy.



Figure 13. Accuracy curves when models were trained on the constructed non-robust sets (CIFAR-10). Each figure plots training accuracy
on the constructed non-robust set (blue line) and test accuracy on the original test set (orange line).
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