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1. Additional Experiments
As described in the main submission, we complete

our evaluation by incorporating the CIFAR100 as in-
distribution setting as well as additional metrics.

1.1. CIFAR100 Results

To complete the AUROC evaluation discussed in the
main paper, we find the corresponding results for the OOD
detection setting with CIFAR100 as the in-distribution
dataset in Table 1 and Table 2.

Table 1 provides the OOD detection results for the statis-
tics stream but does not include the Energy-based model [7]
due to no published results existing for the CIFAR100 set-
ting. The results from Table 1 reinforce the findings from
the main submission, with the gap between the top per-
formers (HDFF and Gram) growing significantly between
the other methods, averaging out to ≈10% AUROC differ-
ence. Comparative to these shifts in scores, the difference
between HDFF and Gram remains small with HDFF taking
significantly less computational time to attain its respective
results.

Table 2 displays the additional OOD detection results
for the training stream but does not contain NMD [1] due
to the absence of published results in the CIFAR100 set-
ting. Similarly to the results from the main submission,
we see that HDFF in combination with other state-of-the-
art OOD detectors increases performance across the ma-
jority of benchmarks. Specifically, we see that HDFF-1DS
outperforms the Spectral Discrepancy Detector [12] in two
of the four comparative benchmarks despite HDFF requir-
ing 50x less computation to achieve these results. We note
that in this CIFAR100 setting, Table 2 shows that HDFF-
MLP is weaker at the SVHN and CIFAR10 OOD datasets.

Statistics Stream - CIFAR100
OOD HDFF HDFF-Ens Gram MSP ML

Dataset (Ours) (Ours) [11] [3] [2]
iSun 95.2 95.8 98.8 82.5 85.5
TINc 93.1 93.8 98.2 83.5 86.3
TINr 95.4 96.0 98.5 81.6 84.3
LSUNc 91.7 92.5 96.0 83.9 86.5
LSUNr 94.5 95.3 99.3 82.7 85.5
SVHN 99.2 99.4 99.0 86.7 90.0
MNIST 99.8 99.8 99.9 82.4 84.6
KMNIST 99.5 99.6 99.99 86.6 87.5
FMNIST 98.4 98.4 99.4 91.0 93.3
DTD 92.9 93.5 97.5 78.1 79.7
CIFAR10 65.7 68.2 74.2 80.9 81.5
Average 93.2 93.8 96.4 83.6 85.9

Table 1: OOD detection results for the against the meth-
ods contained belonging to the statistics stream with CI-
FAR100 as the in-distribution dataset. Comparison met-
ric is AUROC, higher is better. Best results are shown in
blue and bold, second best results are shown in green and
italics. The ensemble in HDFF-Ens always consists of 5
models. Due to an absence of published data, Energy-based
model [7] is not included. In the far-OOD settings, HDFF
and Gram achieve significant (≈10%) improvements in AU-
ROC over the competing methods.

Due to the high compatibility of HDFF with the MLP on
other ODO benchmarks, it is unclear if this drop is due to
the MLP or the HDFF representation without comparative
results from other representations. Future work on auxil-
iary OOD detection networks may investigate the sensitiv-
ity of these auxiliary networks to their input data, determin-
ing which representations are most effective for individual
OOD datasets.



Training Stream - CIFAR100
OOD HDFF-MLP HDFF-1DS Spectral DDU MOOD

Dataset (Ours) (Ours) [12] [9] [6]
iSun 99.9 94.4 - - 77.8
TINc 99.4 93.5 88.6 83.13* -
TINr 99.8 94.0 93.7 83.13* -
LSUNc 93.9 90.5 93.8 - 96.8
LSUNr 99.96 94.9 95.7 - 77.6
SVHN 54.1 92.8 - 87.53 85.9
MNIST 99.8 96.9 - - 91.3
KMNIST 99.6 98.4 - - 97.2
FMNIST 99.7 97.8 - - 99.1
DTD 91.0 86.4 - - 71.7
CIFAR10 44.9 77.7 - - -
Average 89.3 92.5 93.0 84.6 87.2

Table 2: OOD detection results for the against the methods
contained belonging to the training stream with CIFAR100
as the in-distribution dataset. Comparison metric is AU-
ROC, higher is better. Best results are shown in blue and
bold, second best results are shown in green and italics.
Due to an absence of published data, NMD [1] is not in-
cluded. When HDFF is combined with other state-of-the-
art detectors it consistently provides state-of-the-art perfor-
mance across many benchmarks.

1.2. Additional Metrics

Tables 3 and 4 complete the statistics stream evaluation
from our main submission against the current state-of-the-
art under the FPR95 and Detection Error metrics respec-
tively with both CIFAR in-distribution datasets. Note that
neither Table 3 nor Table 4 contain results for the Energy-
based Model [7] due to published results being absent for
these metrics. Across the board, Tables 3 and 4 reflect
the results from the AUROC evaluation in the main sub-
mission with HDFF and Gram [11] outperforming the other
comparison methods. Consistent with the results from the
main submission, we see that the performance gap between
HDFF and Gram is relatively minor, by comparison to the
gaps of other methods, with HDFF having a significant
lower computational cost than Gram. Overall, the origi-
nal evaluation against the AUROC metric provides an accu-
rate assessment of the relative performance of the compared
methods, with Tables 3 and 4 reinforcing the findings from
the original submission.

The results for the training stream are reported in Ta-
bles 5 and 6 for the FPR95 and Detection Error metrics re-
spectively. Note that neither table contains results for the
DDU [9] OOD detector and Table 6 additionally does not
contain MOOD [6]; the absence of both is due to a lack
of published results. The results from Tables 5 and 6 re-
peat the same patterns as both the main submission and the
additional results described in Table 2. In general, HDFF-
MLP provides the strongest performance across the major-
ity of the benchmarks, with HDFF-1DS also boasting large
performance benefits over the original Spectral Discrep-
ancy Detector [12] in the CIFAR10 setting, with smaller

Statistics Stream - FPR95
ID OOD HDFF HDFF-Ens Gram MSP ML

Dataset Dataset (Ours) (Ours) [11] [3] [2]

CIFAR10

iSun 2.7 2.8 0.6 21.8 10.5
TINc 6.8 6.6 2.7 28.4 16.2
TINr 2.7 2.7 1.0 29.9 17.0
LSUNc 20.7 20.8 8.8 25.7 14.3
LSUNr 2.1 1.8 0.4 21.4 10.3
SVHN 2.7 2.3 2.6 25.3 14.3
MNIST 0.01 0 0 56.6 43.9
KMNIST 1 0.4 0 42.4 31.4
FMNIST 1.2 0.3 0.3 37.2 25.1
DTD 27.3 26.4 8.7 46.7 39.3
CIFAR100 83.6 82.8 68.1 52.8 47.8

CIFAR100

iSun 25.3 22.9 6.3 72.4 68.9
TINc 35.2 33.1 10.0 67.5 63.4
TINr 23.9 21.3 6.7 72.0 68.7
LSUNc 39.1 37.3 23.3 70.1 66.7
LSUNr 29.8 26.0 5.9 72.1 68.3
SVHN 3.1 2.4 4.1 66.1 59.2
MNIST 0 0 0 83.3 82.5
KMNIST 0.04 0.01 0 70.2 70.3
FMNIST 6.7 6.7 1.7 49.0 40.9
DTD 31.9 30.5 15.1 79.3 78
CIFAR10 92.2 91.0 86.8 77.2 76.4

Average 19.9 19.0 11.5 53.1 46.1

Table 3: OOD detection results for the against the methods
contained belonging to the statistics stream. Comparison
metric is FPR@95, lower is better. Best results are shown
in blue and bold, second best results are shown in green
and italics. Due to an absence of published data, Energy-
based model [7] is not included. HDFF and Gram consis-
tently produce state-of-the-art level performance, with a sig-
nificant margin between them and the other statistical base-
lines.

benefits in the CIFAR100 setting. In summary, the results
from Tables 5 and 6 help strengthen the claims main in the
main submission by broadening the standard of good per-
formance.

2. Ablations

2.1. Projection Dimensionality

Figure 1 visualises the influence of the number of dimen-
sions in the hyperdimensional space on the OOD detection
performance. Specifically, we plot the mean and 95% con-
fidence interval over 10 initialisations of the random pro-
jection matrices at each order of magnitude for a single 1D
Subspaces [12] trained model. The general trend seen in
both figures is that as the number of dimensions increases
up to 103, the mean performance of the HDFF detector in-
creases. Similarly, we see that the bounds of 95% confi-
dence all but effectively disappear when considering spaces
of 103 dimensions or greater. The results of this ablation
show that standard choices of hyperdimensional space in
the range of 103−104 will produce reasonable results, con-
sistent with conventions used in HDC literature [10, 8, 4].



Statistics Stream - Detection Error
ID OOD HDFF HDFF-Ens Gram MSP ML

Dataset Dataset (Ours) (Ours) [11] [3] [2]

CIFAR10

iSun 3.7 3.9 1.8 8.2 6.9
TINc 5.5 5.4 3.5 9.4 8.3
TINr 3.8 3.8 2.1 9.8 8.6
LSUNc 9.7 9.7 6.7 9.0 7.9
LSUNr 3.3 3.4 1.2 8.0 6.7
SVHN 3.7 3.5 3.6 7.8 7.2
MNIST 1.5 1.1 0.1 16 15.4
KMNIST 2.9 2.6 0.3 12.3 12.0
FMNIST 3.1 2.5 1.6 11.9 10.7
DTD 12.8 12.7 6.7 15.3 15.6
CIFAR100 29.9 30.0 28.0 17.4 18.0

CIFAR100

iSun 11.8 11.0 5.0 25.2 22.0
TINc 14.6 13.6 6.4 24.5 21.2
TINr 11.4 10.6 5.4 26.0 23.0
LSUNc 16.9 15.7 11.2 23.7 20.6
LSUNr 12.6 11.4 4.9 24.9 21.8
SVHN 3.9 3.5 4.3 20.7 16.7
MNIST 0.7 0.5 0.6 23.1 20.6
KMNIST 1.6 1.6 0.3 20.0 18.8
FMNIST 5.0 4.9 3.0 16.9 13.8
DTD 15.3 14.4 8.2 28.0 26.6
CIFAR10 37.1 35.1 32.8 25.9 25.3

Average 9.6 9.1 6.3 17.5 15.8

Table 4: OOD detection results for the against the meth-
ods contained belonging to the statistics stream. Compar-
ison metric is Detection Error, lower is better. Best results
are shown in blue and bold, second best results are shown
in green and italics. Due to an absence of published data,
Energy-based model [7] is not included.

(a) CIFAR10 as In-Distribution

(b) CIFAR100 as In-Distribution

Figure 1: Ablation of the required size of projected HD
space to achieve best OOD detection performance. Individ-
ual plot lines show mean and 95% confidence interval over
10 independent initialisations of projection matrices on the
same model trained with the 1D Subspaces [12] methodol-
ogy. Features should be projected into a HD space in the
range of 103 − 104 dimensions to remove the potential for
variation in OOD detection performance.

Training Stream - FPR95
ID OOD HDFF HDFF Spectral NMD MOOD

Dataset Dataset (MLP) (1DS) [12] [1] [6]

CIFAR10

iSun 0.01 0.5 - 0.3 38.8
TINc 0.4 1.7 9.0 3.9 -
TINr 0.1 1.3 7.6 - -
LSUNc 9.6 3.3 2.8 6.1 3.2
LSUNr 0 0.4 3.4 - 36.2
SVHN 66.4 5.2 - 2.3 17.2
MNIST 0.2 2.8 - - 0.4
KMNIST 5.0 2.5 - - 0.3
FMNIST 0.3 4.1 - - 0.1
DTD 18.9 14.8 - 6.0 56.0
CIFAR100 85.8 42.6 - 36.2 -

CIFAR100

iSun 0.2 23.6 - - 81.5
TINc 2.4 28.8 41.7 - -
TINr 0.7 24.3 47.2 - -
LSUNc 25.1 48.2 50.2 - 17.0
LSUNr 0.1 21.6 43.0 - 81.2
SVHN 96.0 26.0 - - 63.7
MNIST 0 11.7 - - 57.7
KMNIST 0.4 6.7 - - 16.6
FMNIST 0.01 8.3 - - 4.6
DTD 31.1 50.9 - - 86.8
CIFAR10 97.1 87.6 - - -

Average 20.0 19.0 25.6 9.1 35.1

Table 5: OOD detection results for the against the methods
contained belonging to the training stream. Comparison
metric is FPR@95, lower is better. Best results are shown
in blue and bold, second best results are shown in green
and italics. Due to an absence of published data, DDU [9]
is not included. Consistent with the findings from the main
submission, HDFF when combined with recent state-of-the-
art OOD detectors produces improved results, setting a new
state-of-the-art.

2.2. Additional Layer Ablations

Figure 2 provides additional ablations of individual layer
performance with respect to the other standard metrics for
the benchmark defined in [5]; those being FPR@95, De-
tection Error and Maximum F1 Score. We make use of
the same 12 BasicBlock hooks as in the main submission.
Across both settings we see that the cropped datasets nearly
perfectly mirror each other, indicating that there is a set of
features that HDFF is consistently strong at detecting. In
the CIFAR10 setting we see that across all metrics, there
is no individual layer that performs at or above the level of
the the fusion of feature maps. This trend is violated by
the later layers, 7 through to 9 in the CIFAR100 setting. In
particular, we see that the metrics that measure binarised
performance, F1 and FPR@95, appear to have the largest
increase above the fusion of features, usually in only a sin-
gle layer. Overall, we make the same observation as in the
main submission; there is no individual layer that performs
well across all OOD datasets, assuming we already have
the prior knowledge of how well each layer performs at this
task. Future work into weighting individual layers based on
predicted performance may be an important consideration.



(a) CIFAR10 - Detection Error (b) CIFAR100 - Detection Error

(c) CIFAR10 - FPR@95 (d) CIFAR100 - FPR@95

(e) CIFAR10 - Maximum F1 (f) CIFAR100 - Maximum F1

Figure 2: Layer-wise ablation across multiple metrics for the 1D Subspaces trained model. We plot mean and 95% confidence
interval for each datasets with the dotted lines corresponding to the performance of the fusion of feature maps across the
network. For the CIFAR10 setting in (a), (c) and (e) it is clear that the fusion of feature maps from across the network provide
the best performance. For the CIFAR100 setting in (b), (d) and (f) we see that violations of this characteristic are present in
the later layers of 7, 8 and 9. Although some individual layers violate this characteristic, we note that no individual layer
performs well across all of the OOD datasets.

2.3. Preprocessing

In order to apply our hyperdimensional feature fusion to
the feature maps of a DNN we first implemented a prepro-
cessing pipeline that made use of a global pooling operation
and mean-centering. Table 7 ablates the choice of pooling
components on a subset of datasets with the AUROC met-
ric, showing their influence to the overall results described
in the main paper.

Table 7 shows that in most cases max pooling increases
performance in the CIFAR10 settings and average pooling
provides better results on the whole for the CIFAR100 set-
ting. We additionally note that the performance gaps be-
tween max and average pooling are relatively minor, with
only the LSUN datasets in the CIFAR100 setting having a
discrepancy greater than 1%. Overall, both max and aver-
age pooling are approximately balanced with no clear better
choice.

2.4. Inter-Sample Similarity

The concept of the angular distance between class de-
scriptor vectors and image descriptors as visual similarity
between the sample and the input extends to comparisons

between pairs of image descriptor vectors. By comparing
the descriptor vectors between two images, HDFF provides
a quantitative metric that evaluates how visually similar the
two input samples are. Since the angles between vectors
is bounded between [0, 90] degree we can assign semantic
meaning to these bounds with 0 corresponding to exactly
matching images and 90 corresponding to images with no
similarity at all. Figure 3 demonstrates a few examples
of this, visualising the angular difference between images
sampled from the CIFAR10 ID set.
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