
Supplemental Material :
Handling Image and Label Resolution Mismatch in Remote Sensing

Scott Workman
DZYNE Technologies

Armin Hadzic
DZYNE Technologies

M. Usman Rafique
Kitware Inc.

1. Dataset Details
We introduced the Low2High dataset, an extension of the

Chesapeake [3] dataset that includes a merged label taxon-
omy, additional auxiliary imagery across the United States,
and a new held-out test set from Milwaukee, WI. The spatial
coverage of the auxiliary imagery is shown in Figure 1. Ex-
ample data from the held-out test set is shown in Figure 2.
The merged label taxonomy we use for our experiments is
outlined in Table 1. A summary of the number of samples
per subset of the primary and auxiliary dataset components
are included in Table 2 and Table 3, respectively.

2. Self-Supervised Learning
We show that self-supervised pretraining on the auxil-

iary image dataset in the Low2High dataset leads to im-
proved performance when evaluating on regions with dras-
tically different appearance characteristics. We use image
reconstruction as a pretraining strategy using the masked
autoencoders (MAE) [1] framework, depicted in Figure 3.
We used mean squared error between the original image (I)
and reconstructed image (R) for a given batch B as the ob-
jective function, as follows:

1

B

B∑
i

(I[i]−R[i])2 (1)

In Figure 4 we show a qualitative example of reconstruction
for a given overhead image from our test set. The resulting
composite (masked region combined with reconstruction)
image appears to be a near duplicate of the input image after
training for 300 epochs.

3. Additional Results
Figure 5 shows example qualitative results from the re-

gion aggregation component of our method. Region ag-
gregation allows the network to output fine-grained predic-
tions, without requiring the target label to be upsampled
to the native image resolution. In other words, the net-
work outputs high-resolution predictions which are aggre-
gated (by summing the logits of pixels in the region) and

Figure 1: Spatial coverage of the auxiliary imagery in the
Low2High dataset.

Figure 2: Examples of the auxiliary imagery in the
Low2High dataset.

passed to the objective function for comparison with the
low-resolution target label. As observed, this process is of-
ten not sufficient by itself due to the low quality of the tar-
get label (NLCD is 30m per pixel), as well as discrepancies
with the high-resolution label (i.e., missing objects). How-
ever, our full method (Figure 5, right) is able to leverage
region aggregation and adversarial learning to yield high
quality predictions. Figure 6 shows qualitative results from
the Milwaukee, WI test set, a diverse geographic region not
observed during training.

1



Figure 3: An overview of the masked autoencoders architecture.

Image Masked Reconstruction Composite

Figure 4: An example reconstruction from masked autoencoders on overhead imagery.

4. Detailed Architecture
We provide detailed architecture descriptions for the

components of our network. Table 4 shows the feature en-
coder used for the overhead imagery (ResNet-18). Table 5
shows our U-Net style decoder used for generating the seg-
mentation output. Finally, Table 6 shows the discriminator
architecture.

References
[1] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In IEEE Conference on Computer Vision and
Pattern Recognition, 2022.

[2] Andrew Pilant, Keith Endres, Daniel Rosenbaum, and Gillian
Gundersen. Us epa enviroatlas meter-scale urban land cover
(mulc): 1-m pixel land cover class definitions and guidance.
Remote sensing, 12(12):1909, 2020.

[3] Caleb Robinson, Le Hou, Kolya Malkin, Rachel Soobit-
sky, Jacob Czawlytko, Bistra Dilkina, and Nebojsa Jojic.
Large scale high-resolution land cover mapping with multi-
resolution data. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[4] Limin Yang, Suming Jin, Patrick Danielson, Collin Homer,
Leila Gass, Stacie M Bender, Adam Case, Catherine Costello,
Jon Dewitz, Joyce Fry, et al. A new generation of the united
states national land cover database: Requirements, research
priorities, design, and implementation strategies. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 146:108–123,
2018.

2



Image GT (High) GT (Low) Ours (Agg.) Ours

Figure 5: Example qualitative results from our approach.

Figure 6: Example qualitative results for the Milwaukee, WI test set. (top) NAIP image, (middle) remapped ground-truth
label from EnviroAtlas, and (bottom) our prediction.

3



Table 1: Our merged label taxonomy.

Chesapeake [3] Remapped

Water Water
Forest Forest
Field Field
Barren Impervious
Impervious (other) Impervious
Impervious (road) Impervious

NLCD [4]

Open Water Water
Deciduous Forest Forest
Evergreen Forest Forest
Mixed Forest Forest
Dwarf Scrub Forest
Shrub/Scrub Forest
Woody Wetlands Forest
Grassland/Herbaceous Field
Sedge/Herbaceous Field
Lichens Field
Moss Field
Pasture/Hay Field
Cultivated Crops Field
Emergent Herbaceous Wetlands Field
Developed, Open Space Impervious
Developed, Low Intensity Impervious
Developed, Medium Intensity Impervious
Developed, High Intensity Impervious
Barren Land (Rock/Sand/Clay) Impervious
Perennial Ice/Snow Ignore

EPA EnviroAtlas [2]

Water Water
Tree Forest
Shrub Forest
Orchards Forest
Wooded Wetlands Forest
Soil Field
Grass Field
Agriculture Field
Wetlands Field
Impervious Impervious

Table 2: Low2High dataset summary (images of size 512×
512).

Train Validation Held-out Test
Delaware 4560 571 571 540
New York 3915 490 490 492
Maryland 4886 611 611 540
Pennsylvania 4433 555 555 540
Virginia 4440 556 556 552
West Virginia 3029 379 379 540

Total 25263 3162 3162 3204

Table 3: Variant of the Low2High dataset, including auxil-
iary imagery, that is used for our model generalization ex-
periments. Rest of USA excludes Alaska, Rhode Island,
Hawaii and the other states listed below.

Auxiliary Train Validation Held-out Test

Delaware 18 4560 571 571 540
New York 558 3915 490 490 492
Maryland 117 4886 611 611 540
Pennsylvania 630 4433 555 555 540
Virginia 1159 552
West Virginia 243 3029 379 379 540
Wisconsin 270 3262
Rest of USA 10458

Total 12024 20823 4035 2606 6466

4



Table 4: Feature encoder architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Encoder [1, 3, 512, 512] – [1, 64, 128, 128] –
— Conv2d: 1-1 [1, 3, 512, 512] [7, 7] [1, 64, 256, 256] 9,408
— BatchNorm2d: 1-2 [1, 64, 256, 256] – [1, 64, 256, 256] 128
— ReLU: 1-3 [1, 64, 256, 256] – [1, 64, 256, 256] –
— MaxPool2d: 1-4 [1, 64, 256, 256] 3 [1, 64, 128, 128] –
— Sequential: 1-5 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — BasicBlock: 2-1 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — — Conv2d: 3-1 [1, 64, 128, 128] [3, 3] [1, 64, 128, 128] 36,864
— — — BatchNorm2d: 3-2 [1, 64, 128, 128] – [1, 64, 128, 128] 128
— — — ReLU: 3-3 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — — Conv2d: 3-4 [1, 64, 128, 128] [3, 3] [1, 64, 128, 128] 36,864
— — — BatchNorm2d: 3-5 [1, 64, 128, 128] – [1, 64, 128, 128] 128
— — — ReLU: 3-6 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — BasicBlock: 2-2 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — — Conv2d: 3-7 [1, 64, 128, 128] [3, 3] [1, 64, 128, 128] 36,864
— — — BatchNorm2d: 3-8 [1, 64, 128, 128] – [1, 64, 128, 128] 128
— — — ReLU: 3-9 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — — Conv2d: 3-10 [1, 64, 128, 128] [3, 3] [1, 64, 128, 128] 36,864
— — — BatchNorm2d: 3-11 [1, 64, 128, 128] – [1, 64, 128, 128] 128
— — — ReLU: 3-12 [1, 64, 128, 128] – [1, 64, 128, 128] –
— Sequential: 1-6 [1, 64, 128, 128] – [1, 128, 64, 64] –
— — BasicBlock: 2-3 [1, 64, 128, 128] – [1, 128, 64, 64] –
— — — Conv2d: 3-13 [1, 64, 128, 128] [3, 3] [1, 128, 64, 64] 73,728
— — — BatchNorm2d: 3-14 [1, 128, 64, 64] – [1, 128, 64, 64] 256
— — — ReLU: 3-15 [1, 128, 64, 64] – [1, 128, 64, 64] –
— — — Conv2d: 3-16 [1, 128, 64, 64] [3, 3] [1, 128, 64, 64] 147,456
— — — BatchNorm2d: 3-17 [1, 128, 64, 64] – [1, 128, 64, 64] 256
— — — Sequential: 3-18 [1, 64, 128, 128] – [1, 128, 64, 64] 8,448
— — — ReLU: 3-19 [1, 128, 64, 64] – [1, 128, 64, 64] –
— — BasicBlock: 2-4 [1, 128, 64, 64] – [1, 128, 64, 64] –
— — — Conv2d: 3-20 [1, 128, 64, 64] [3, 3] [1, 128, 64, 64] 147,456
— — — BatchNorm2d: 3-21 [1, 128, 64, 64] – [1, 128, 64, 64] 256
— — — ReLU: 3-22 [1, 128, 64, 64] – [1, 128, 64, 64] –
— — — Conv2d: 3-23 [1, 128, 64, 64] [3, 3] [1, 128, 64, 64] 147,456
— — — BatchNorm2d: 3-24 [1, 128, 64, 64] – [1, 128, 64, 64] 256
— — — ReLU: 3-25 [1, 128, 64, 64] – [1, 128, 64, 64] –
— Sequential: 1-7 [1, 128, 64, 64] – [1, 256, 32, 32] –
— — BasicBlock: 2-5 [1, 128, 64, 64] – [1, 256, 32, 32] –
— — — Conv2d: 3-26 [1, 128, 64, 64] [3, 3] [1, 256, 32, 32] 294,912
— — — BatchNorm2d: 3-27 [1, 256, 32, 32] – [1, 256, 32, 32] 512
— — — ReLU: 3-28 [1, 256, 32, 32] – [1, 256, 32, 32] –
— — — Conv2d: 3-29 [1, 256, 32, 32] [3, 3] [1, 256, 32, 32] 589,824
— — — BatchNorm2d: 3-30 [1, 256, 32, 32] – [1, 256, 32, 32] 512
— — — Sequential: 3-31 [1, 128, 64, 64] – [1, 256, 32, 32] 33,280
— — — ReLU: 3-32 [1, 256, 32, 32] – [1, 256, 32, 32] –
— — BasicBlock: 2-6 [1, 256, 32, 32] – [1, 256, 32, 32] –
— — — Conv2d: 3-33 [1, 256, 32, 32] [3, 3] [1, 256, 32, 32] 589,824
— — — BatchNorm2d: 3-34 [1, 256, 32, 32] – [1, 256, 32, 32] 512
— — — ReLU: 3-35 [1, 256, 32, 32] – [1, 256, 32, 32] –
— — — Conv2d: 3-36 [1, 256, 32, 32] [3, 3] [1, 256, 32, 32] 589,824
— — — BatchNorm2d: 3-37 [1, 256, 32, 32] – [1, 256, 32, 32] 512
— — — ReLU: 3-38 [1, 256, 32, 32] – [1, 256, 32, 32] –
— Sequential: 1-8 [1, 256, 32, 32] – [1, 512, 16, 16] –
— — BasicBlock: 2-7 [1, 256, 32, 32] – [1, 512, 16, 16] –
— — — Conv2d: 3-39 [1, 256, 32, 32] [3, 3] [1, 512, 16, 16] 1,179,648
— — — BatchNorm2d: 3-40 [1, 512, 16, 16] – [1, 512, 16, 16] 1,024
— — — ReLU: 3-41 [1, 512, 16, 16] – [1, 512, 16, 16] –
— — — Conv2d: 3-42 [1, 512, 16, 16] [3, 3] [1, 512, 16, 16] 2,359,296
— — — BatchNorm2d: 3-43 [1, 512, 16, 16] – [1, 512, 16, 16] 1,024
— — — Sequential: 3-44 [1, 256, 32, 32] – [1, 512, 16, 16] 132,096
— — — ReLU: 3-45 [1, 512, 16, 16] – [1, 512, 16, 16] –
— — BasicBlock: 2-8 [1, 512, 16, 16] – [1, 512, 16, 16] –
— — — Conv2d: 3-46 [1, 512, 16, 16] [3, 3] [1, 512, 16, 16] 2,359,296
— — — BatchNorm2d: 3-47 [1, 512, 16, 16] – [1, 512, 16, 16] 1,024
— — — ReLU: 3-48 [1, 512, 16, 16] – [1, 512, 16, 16] –
— — — Conv2d: 3-49 [1, 512, 16, 16] [3, 3] [1, 512, 16, 16] 2,359,296
— — — BatchNorm2d: 3-50 [1, 512, 16, 16] – [1, 512, 16, 16] 1,024
— — — ReLU: 3-51 [1, 512, 16, 16] – [1, 512, 16, 16] –

5



Table 5: Decoder architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Decoder [1, 64, 256, 256] – [1, 12, 512, 512] –
— Upsample: 1-1 [1, 512, 16, 16] – [1, 512, 32, 32] –
— Sequential: 1-2 [1, 768, 32, 32] – [1, 256, 32, 32] –
— — Conv2d: 2-1 [1, 768, 32, 32] [3, 3] [1, 256, 32, 32] 1,769,728
— — ReLU: 2-2 [1, 256, 32, 32] – [1, 256, 32, 32] –
— — Conv2d: 2-3 [1, 256, 32, 32] [3, 3] [1, 256, 32, 32] 590,080
— — ReLU: 2-4 [1, 256, 32, 32] – [1, 256, 32, 32] –
— Upsample: 1-3 [1, 256, 32, 32] – [1, 256, 64, 64] –
— Sequential: 1-4 [1, 384, 64, 64] – [1, 128, 64, 64] –
— — Conv2d: 2-5 [1, 384, 64, 64] [3, 3] [1, 128, 64, 64] 442,496
— — ReLU: 2-6 [1, 128, 64, 64] – [1, 128, 64, 64] –
— — Conv2d: 2-7 [1, 128, 64, 64] [3, 3] [1, 128, 64, 64] 147,584
— — ReLU: 2-8 [1, 128, 64, 64] – [1, 128, 64, 64] –
— Upsample: 1-5 [1, 128, 64, 64] – [1, 128, 128, 128] –
— Sequential: 1-6 [1, 192, 128, 128] – [1, 64, 128, 128] –
— — Conv2d: 2-9 [1, 192, 128, 128] [3, 3] [1, 64, 128, 128] 110,656
— — ReLU: 2-10 [1, 64, 128, 128] – [1, 64, 128, 128] –
— — Conv2d: 2-11 [1, 64, 128, 128] [3, 3] [1, 64, 128, 128] 36,928
— — ReLU: 2-12 [1, 64, 128, 128] – [1, 64, 128, 128] –
— Upsample: 1-7 [1, 64, 128, 128] – [1, 64, 256, 256] –
— Sequential: 1-8 [1, 128, 256, 256] – [1, 64, 256, 256] –
— — Conv2d: 2-13 [1, 128, 256, 256] [3, 3] [1, 64, 256, 256] 73,792
— — ReLU: 2-14 [1, 64, 256, 256] – [1, 64, 256, 256] –
— — Conv2d: 2-15 [1, 64, 256, 256] [3, 3] [1, 64, 256, 256] 36,928
— — ReLU: 2-16 [1, 64, 256, 256] – [1, 64, 256, 256] –
— Upsample: 1-9 [1, 64, 256, 256] – [1, 64, 512, 512] –
— Conv2d: 1-10 [1, 64, 512, 512] [3, 3] [1, 12, 512, 512] 6,924

6



Table 6: Discriminator architecture.

Layer (type:depth-idx) Input Shape Kernel Shape Output Shape Param #
Discriminator [1, 1, 256, 256] – – –
— ModuleList: 1-1 – – – –
— — DiscriminatorBlock: 2-1 [1, 1, 256, 256] – [1, 32, 128, 128] –
— — — Conv2d: 3-1 [1, 1, 256, 256] [1, 1] [1, 32, 128, 128] 64
— — — Sequential: 3-2 [1, 1, 256, 256] – [1, 32, 256, 256] 9,568
— — — Sequential: 3-3 [1, 32, 256, 256] – [1, 32, 128, 128] 9,248
— — DiscriminatorBlock: 2-2 [1, 32, 128, 128] – [1, 64, 64, 64] –
— — — Conv2d: 3-4 [1, 32, 128, 128] [1, 1] [1, 64, 64, 64] 2,112
— — — Sequential: 3-5 [1, 32, 128, 128] – [1, 64, 128, 128] 55,424
— — — Sequential: 3-6 [1, 64, 128, 128] – [1, 64, 64, 64] 36,928
— — DiscriminatorBlock: 2-3 [1, 64, 64, 64] – [1, 128, 32, 32] –
— — — Conv2d: 3-7 [1, 64, 64, 64] [1, 1] [1, 128, 32, 32] 8,320
— — — Sequential: 3-8 [1, 64, 64, 64] – [1, 128, 64, 64] 221,440
— — — Sequential: 3-9 [1, 128, 64, 64] – [1, 128, 32, 32] 147,584
— — DiscriminatorBlock: 2-4 [1, 128, 32, 32] – [1, 128, 16, 16] –
— — — Conv2d: 3-10 [1, 128, 32, 32] [1, 1] [1, 128, 16, 16] 16,512
— — — Sequential: 3-11 [1, 128, 32, 32] – [1, 128, 32, 32] 295,168
— — — Sequential: 3-12 [1, 128, 32, 32] – [1, 128, 16, 16] 147,584
— — DiscriminatorBlock: 2-5 [1, 128, 16, 16] – [1, 128, 8, 8] –
— — — Conv2d: 3-13 [1, 128, 16, 16] [1, 1] [1, 128, 8, 8] 16,512
— — — Sequential: 3-14 [1, 128, 16, 16] – [1, 128, 16, 16] 295,168
— — — Sequential: 3-15 [1, 128, 16, 16] – [1, 128, 8, 8] 147,584
— — DiscriminatorBlock: 2-6 [1, 128, 8, 8] – [1, 128, 4, 4] –
— — — Conv2d: 3-16 [1, 128, 8, 8] [1, 1] [1, 128, 4, 4] 16,512
— — — Sequential: 3-17 [1, 128, 8, 8] – [1, 128, 8, 8] 295,168
— — — Sequential: 3-18 [1, 128, 8, 8] – [1, 128, 4, 4] 147,584
— — DiscriminatorBlock: 2-7 [1, 128, 4, 4] – [1, 128, 2, 2] –
— — — Conv2d: 3-19 [1, 128, 4, 4] [1, 1] [1, 128, 2, 2] 16,512
— — — Sequential: 3-20 [1, 128, 4, 4] – [1, 128, 4, 4] 295,168
— — — Sequential: 3-21 [1, 128, 4, 4] – [1, 128, 2, 2] 147,584
— — DiscriminatorBlock: 2-8 [1, 128, 2, 2] – [1, 128, 2, 2] –
— — — Conv2d: 3-22 [1, 128, 2, 2] [1, 1] [1, 128, 2, 2] 16,512
— — — Sequential: 3-23 [1, 128, 2, 2] – [1, 128, 2, 2] 295,168
— ModuleList: 1-2 – – – –
— Conv2d: 1-3 [1, 128, 2, 2] [3, 3] [1, 128, 2, 2] 147,584
— Flatten: 1-4 [1, 128, 2, 2] – [1, 512] –
— Linear: 1-5 [1, 512] – [1, 1] 513

7


