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In this supplementary, we provide a detailed description
of the land cover classes of the OpenEarthMap dataset. We
also present a brief overview of the baseline methods that
were experimented on the OpenEarthMap dataset for the se-
mantic segmentation and unsupervised domain adaptation
tasks. The training settings and more experimental results
on the semantic segmentation and the unsupervised domain
adaptation tasks are presented. Furthermore, we provide
more land cover mapping results that were created from
out-of-sample images (i.e., images not included in Open-
EarthMap) to further demonstrate the generalization of the
OpenEarthMap feature space. The attribution of all source
data is summarized at the end.

1. Land Cover Classes
Using the Anderson classification [1] as a starting point,

we subdivided the urban class into three classes: building,
road, and developed space, which are visually interpretable
in high-resolution images at a sub-meter level of ground
sampling distance (GSD). The definitions of 8 classes in
OpenEarthMap are summarized as follows.

• Bareland includes natural areas covered by sand or
rocks without vegetation, and other accumulations of
earthen materials.

• Rangeland includes areas dominated by herbaceous
vegetation or bushes that are not cultivated or grazed,
as well as grass and shrubs in gardens, parks, and golf
courses.

• Developed space includes areas such as sidewalks,
pavements, footpaths, parking lots, and construction
sites as well as artificial grass areas search as tennis
courts, baseball and football fields, etc. A lane in-
between parking lots is considered as a road. The ma-
terials include asphalt, concrete, stones, bricks, and
tiles. Compacted soil is also labeled as developed
space.

*Equal contribution. †Corresponding author.
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Figure 1: t-SNE 2D visualization of the 97 regions based on
the class proportions in the OpenEarthMap dataset.

• Road includes lanes, streets, railways, airport run-
ways, and highway/motorway for vehicles (e.g.,
trucks, cars, motorbikes, trains, and airplanes) exclud-
ing bicycles. The materials of roads include asphalt,
concrete, and soil.

• Tree includes individual trees and a group of trees that
are identified from their shapes (shadow) and height.

• Water includes water bodies (e.g., rivers, streams,
lakes, sea, ponds, dams) and swimming pools.

• Agriculture land includes areas used for producing
crops (e.g., rice, wheat corn, soybeans, vegetables, to-
bacco, and cotton), perennial woody crops (e.g., or-
chards and vineyards), and non-native vegetation for
grazing.

• Building includes residential, commercial, and indus-
trial buildings.

Figure 1 shows a t-SNE 2D plot of the 97 regions using
class proportions in the OpenEarthMap dataset. As can be
seen in the bar graphs of 12 representative regions, the class
proportions in the different regions are diverse.



Figure 2: Visual comparison of land cover mapping results of some of the baseline models.

Table 1: Performance of ImageNet pre-trained model with
different optimizers.

Model Pre-trained on Optimizer mIoU

UPerNet-Swin-B

ImageNet SGD 62.15
ImageNet AadmW 66.09

None SGD 62.32
None AadmW 66.13

Table 2: The results of using different input patch sizes and
different loss functions with UPerNet-Swin-B.

(a) Input patch size

Patch size mIoU
512×512 66.09
620×620 66.14
768×768 66.17

1024×1024 67.02

(b) Loss functions

Function mIoU
CE 66.09

CE+Lovasz 66.21
CE+Focal 65.89

CE+Lovasz+Focal 66.38

2. Land Cover Semantic Segmentation

2.1. Brief Overview of the Baselines

The land cover semantic segmentation baseline networks
that were experimented on the OpenEarthMap dataset are
CNN-based (U-Net [16], DeepLabV3 [3], HRNet [17], K-
Net [28], and ConvNeXt [12]) and Transformer-based (U-

NetFormer [22], FT-U-NetFormer [22], SETR [29], Seg-
Former [26], UPerNet [25] with the backbones of ViT [7],
Twins [5], and Swin Transformer [11]) architectures. U-Net
uses an encoder-decoder structure to extract objects and im-
age context at different scales. U-Net models with VGG-
11, ResNet-34, and EfficientNet-B4 as backbones were
adopted. DeepLabV3 [3] uses a dilation hyperparameter of
convolutional layers to develop atrous spatial pyramid pool-
ing for robust object segmentation through many scales.
HRNet builds high-resolution representations by continu-
ally executing multi-scale fusions across parallel convolu-
tions. We employed an HRNet with W48 as a backbone.
K-Net [28] separates instances and semantic categories uni-
formly with a number of learnable kernels. The kernels
conduct convolution on the image features to provide seg-
mentation predictions. ConvNeXt [12] is a pure ConvNet
model constructed entirely from standard ConvNet mod-
ules. UPerNet with a backbone of ConvNeXt-B was used.
The U-NetFormer [22] selects the advanced ResNext101 as
the encoder and develops an efficient global–local attention
mechanism to model both global and local information in
the decoder. FT-U-NetFormer [22] replaces the CNN en-
coder with the Swin Transformer (Swin-B). SETR [29] in-
terprets an input image as a sequence of patches represented
by a learned patch embedding, then, modifies the sequence
using a global self-attention module for discriminative fea-
ture representation learning. A SETR PUP with a back-



Table 3: Compact segmentation models discovered on OpenEarthMap training set with SparseMask and FasterSeg. The
class IoUs and the mIoU are calculated on the test set of OpenEarthMap with TTA applied.

Method Trial IoU (%) mIoU Params FLOPs FPS
Bareland Rangeland Developed Road Tree Water Agriculture Building (%) (M) (G) (ms)

SparseMask 1st 47.00 53.42 46.40 46.94 66.98 79.02 72.64 69.25 60.21 2.96 10.28 25.9
2nd 45.96 53.01 46.71 47.26 67.12 78.81 71.88 69.27 60.00 3.10 10.39 26.4

FasterSeg 1st 34.04 51.40 44.97 55.82 66.58 74.50 70.33 69.14 58.35 2.23 14.58 74.8
2nd 35.78 52.03 46.32 56.97 67.20 75.76 70.70 70.55 59.41 3.47 15.37 89.5

Table 4: Compact segmentation models discovered on OpenEarthMap training set with SparseMask and FasterSeg. The
class IoUs and the mIoU are calculated on the test set of OpenEarthMap without TTA applied.

Method Trial IoU (%) mIoU Params FLOPs FPS
Bareland Rangeland Developed Road Tree Water Agriculture Building (%) (M) (G) (ms)

SparseMask 1st 46.15 51.88 44.01 43.64 65.20 77.41 71.47 66.10 58.23 2.96 10.28 51.2
2nd 44.78 51.56 44.34 43.95 65.44 77.34 70.98 66.09 58.06 3.10 10.39 57.2

FasterSeg 1st 33.52 50.60 43.93 54.74 65.98 73.55 69.73 68.36 57.55 2.23 14.58 143.2
2nd 34.50 51.27 45.27 55.94 66.61 74.71 70.05 69.73 58.51 3.47 15.37 171.3

bone of ViT-L was used. SegFormer [26] unifies transform-
ers with lightweight multilayer perceptron decoders without
considering positional encoding. A MiT-B5 encoder was
used as a backbone for SegFormer. Swin Transformer [11]
creates hierarchical feature maps by merging image patches
into deeper layers. Twins [5] uses a spatially separable
attention mechanism comprising of locally-grouped self-
attention and global sub-sampled attention.

2.2. Experimental Details

All the baselines we used for the experiments are
PyTorch-based. The U-Net-based architectures are adopted
from Yakubovskiy [27] and Wang et al. [22], and the other
architectures are from MMsegmentation [6]. The networks
were trained on a single NVIDIA GPU DGX-1/DGX-2 with
16/32GB of RAM. The number of epochs was set to 200,
and a batch size of 8 with an image input size of 512×512
randomly cropped was employed. The cross-entropy (CE)
loss was used in training all the networks. For the U-Net-
based architectures, we used AdamW optimizer [13] with a
learning rate of 1 × 10−4 and weight decay of 1 × 10−6.
For the MMsegmentation-based architectures, we used the
default settings of each method. We adopted stochastic
gradient descent (SGD) optimizer with a learning rate of
1× 10−3, weight decay of 5× 10−4, and momentum of 0.9
for the DeeplabV3 and HRNet networks. The rest of the
networks used AdamW optimizer with a learning rate set as
6×10−5, weight decay as 0.01, and betas parameters as 0.9
and 0.999. A polynomial learning rate decay with a factor
of 1.0 and an initial linear warm-up of 1500 iterations was
used. The backbones in all the networks were pre-trained
on the ImageNet dataset. No data augmentation was ap-

plied during training for all networks. Following previous
works, we used mIoU to assess the performance of all mod-
els. All results are based on test-time augmentation (TTA)
with flipping operations.

2.3. Results

Visualization: More visual examples of segmentation re-
sults obtained from some selected baseline methods are pre-
sented in Figure 2. In the first row (Rotterdam), DeepLabV3
failed to identify the entire stretch of road. In the sec-
ond row (San Tiago), the entire bareland and the small
developed space on top of the bareland were identified
by FT-U-NetFormer and SegFormer. U-Net-EfficientNet-
B4, FT-U-NetFormer and SegFormer were able to iden-
tify the bareland that stretches from along the river (third
row), but DeepLabV3, UPerNet-Swin-B, and K-Net failed
to identify it. Compared to DeepLabV3 and K-Net, U-Net-
EfficientNet-B4, DeepLabV3, and FT-U-NetFormer did
recognize most parts of the water body in Viru (fourth
row). UPerNet-Swin-B and DeeplabV3 classified the water
body in Viru as agricultural land, rangeland, and developed
space.
Ablation study: We conducted an ablation study to exam-
ine the effects of ImageNet pre-training, optimizers, im-
age size, and loss functions on the OpenEarthMap dataset
using a UPerNet-Swin-B network. We employed two dif-
ferent optimizers (AadmW and SGD), three loss functions
(CE, Lovasz, and Focal), and four different patch sizes. As
shown in Table 1, the model that was not pre-trained on
ImageNet performed better than the one pre-trained on Im-
ageNet. In both cases, AdamW optimizer attains better re-
sults. Table 2 shows the results of using different patch sizes



and different loss functions for training UPerNet-Swin-B. A
larger patch size tends to achieve better performance. The
combination of all three loss functions (CE, Lovasz, and
Focal) can improve the performance of UPerNet-Swin-B.

2.4. Neural Architecture Search Methods

The two automated neural architecture search methods,
SparseMask [24] and FasterSeg [4], which we adopted
were particularly proposed for compact architecture search
for semantic segmentation tasks in computer vision. Both
methods employed a gradient-based search strategy simi-
lar to the one used in DARTS [10]. Whereas SparseMask
used a pruning technique to compress the searched archi-
tectures, teacher-student co-searching (knowledge distilla-
tion technique) was used in FasterSeg. Following the ar-
chitecture search protocol in both methods, we conducted
four experiments, two with each method, by searching for
lightweight architectures on the OpenEarthMap dataset. All
the experiments we performed on a single NVIDIA Tesla
P100 with 16GB memory. It took about 0.8 GPU days and
2 GPU days to perform the architecture search with Sparse-
Mask and FasterSeg, respectively. The architectures dis-
covered with both methods were trained from scratch using
the same training protocol adopted in [24] and [4] with the
exception of setting the number of epochs to 450. We mea-
sured the class-specific IoUs and mIoU using a single-scale
input with TTA (see Table 3) and without TTA (see Ta-
ble 4) of flipping operations applied to the test set of the
OpenEarthMap dataset. The FPS and the FLOPs were cal-
culated with a single image of 1024×1024 pixels as an in-
put. The inference speed was calculated using the settings
in FasterSeg. Table 3 and Table 4 show the detail class-
specific IoUs along with the mIoUs that are presented in the
paper.

3. Unsupevised Domain Adaptation
3.1. Brief Overview of the Baselines

We adopted a metric-based method (MCD [19]), adver-
sarial training methods (AdaptSeg [18], category-level ad-
versarial network (CLAN) [14], TransNorm [23], and fine-
grained adversarial learning framework for domain adap-
tive (FADA) [20]), and self-training methods (pyramid
curriculum DA (PyCDA) [9], class-balanced self-training
(CBST) [30], instance adaptive self-training (IAST) [15],
and DAFormer [8]) for the unsupervised domain adapta-
tion task. DAFormer is a transformer-based model, and
the others are based on DeepLabV2. The adversarial
training methods seek to match the distributions of the
source and target domains from input-feature-output or a
patch level in a generative adversarial network. Adapt-
Seg [18] uses adversarial learning in the output space and
a multi-level adversarial network to effectively perform

Table 5: Comparing source-only and oracle training for dif-
ferent networks on the 24 regions test set of OpenEarthMap.

Model
mIoU (%)

Source-only Oracle
U-Net-EfficientNet-B4 63.17 64.09

DeepLabV2 50.01 54.65
DeepLabV3 55.27 59.83

HRNet 56.25 60.02
SegFormer 58.25 64.76

UPerNet-Swin-B 52.35 61.82
K-Net 57.21 64.12

output space domain adaptation at different feature lev-
els. CLAN [14] aligns the classes with an adaptive ad-
versarial loss. TransNorm [23] uses an end-to-end train-
able layer to make networks more transferable across do-
mains. FADA [20] uses a fine-grained adversarial learn-
ing framework by aligning the class-level features. Self-
learning methods generate the target domain’s pseudo la-
bels, retrain the model and repeat the procedure. PyCDA [9]
observes the target properties and fuses multi-scale features.
CBST [30] and IAST [15] aim at selecting balanced sam-
ples to improve the quality of pseudo labels. DAFormer [8]
constructs a transformer encoder and a multilevel context-
aware feature fusion decoder by adopting three effective
training strategies: rare class sampling, ImageNet Feature
Distance, and a learning rate warmup.

3.2. Experimental Details

For the DeepLabV2-based methods, we adopted the ar-
chitectures in Wang et al. [21] and kept the default setting.
We used the following training settings (batch size of 8
with image input size of 512×512 randomly cropped) in the
semantic segmentation task for all the DeepLabV2-based
methods and the DAFormer. DeepLabV2 with ResNet50
was used as an extractor, and a discriminator was con-
structed using fully convolutional layers. The classifica-
tion and the discriminator learning rates for the adversarial
training methods were set to 5 × 10−3 and 10−4, respec-
tively. Adam optimizer was used in the discriminator with
momentum of 0.9 and 0.99. We adopted the default pseudo-
generation hyper-parameters in CBST and IAST, and set
the classification learning rate to 10−2. All the networks
were trained for 40K steps in two stages. In the first stage,
the models were trained only on the source images for 8K
steps for initialization. In the second stage, the pseudo-
labels were then updated every 2K steps for the remain-
ing training process. For the DAFormer, an MiT-B5 en-
coder was adopted with AdamW. Other hyper-parameters
remained the same as in the original literature [8].



Figure 3: Visual comparison of unsupervised domain adaption results of some of the baseline models.

3.3. Results

Visualization: More visual examples of the UDA results
are presented in Figure 3. In the first row (Palu), the source-
only DeepLabV2 can barely identify the tree (bottom-left)
and developed space (center-left). These areas were classi-
fied as bareland and water. CBST and IAST also did not
perform well in these areas. Source-only SegFormer and
DAFormer slightly improved their performance in these ar-
eas. In the second row (Dowa), source-only DeepLabV2
could not recognize the tiny road and small buildings. IAST
and CBST performed better on the road, but they cloud not
recognize the small buildings. DAFormer performs excep-
tionally well in those two areas. In the third row (Dussel-
dorf), DAFormer could identify the long and tiny road (bot-
tom), and the other methods only recognized some parts of
the road. The IAST did identify the small water area (top-
left) in Vienna (fourth row), and the other methods classi-
fied it as building.
Comparison of network architectures: To further eval-
uate the suitability of the networks for the UDA task, we
performed several experiments with source-only and ora-
cle training for different models and provided their mIoU
results in Table. 5. The classical DeepLabV2 yielded the
worst results in both source-only and oracle. UPerNet-
Swin-B was slightly better than DeepLabV2 in the source-
only setting. SegFormer obtained the best oracle per-
formance, and U-Net-EfficientNet-B4 outperformed Seg-
Former on the source-only setting. Generally, U-Net-

EfficientNet-B4, SegFormer, and K-Net shared the top po-
sitions in both source-only and oracle settings. These
networks are recommended to be further investigated for
the development of UDA methods on the OpenEarthMap
dataset.

Continent-wise UDA: Visual comparison of continent-
wise UDA results of source-only SegFormer, Oracle and
DAFormer are shown in Figure 4. Eight combinations of
source and target domains are provided. Here, we denote
Africa, Asia, Europe, North America, South America, and
Oceania as AF, AS, EU, NA, SA, and OC, respectively. For
AF→AS, AS→EU, and AF→EU, DAFormer significantly
achieved better results on agriculture land when compared
to source-only SegFormer. DAFormer also identified the
water in EU→NA, and the small buildings and the tiny
roads in SA→AF and AF→NA. The class-specific IoUs
and mIoUs obtained from source-only U-Net-EfficientNet-
B4, source-only SegFormer, and DAFormer are presented
in Figure 5, Figure 6, and Figure 7, respectively. For most
classes, when OC is considered as the source domain, the
transferred result is worst due to the limited number of im-
ages in OC. However, when OC is treated as the target do-
main the performance is better than other settings. With the
exception of OC, building is the easiest transferred class,
which U-Net-EfficientNet-B4 achieved IoUs range of 63.4
to 76.8 and SegFormer achieved a range of 64.3 to 76.3.
The most challenging transferred class is bareland. The U-
Net-EfficientNet-B4 and the SegFormer attained IoUs range



Figure 4: Visual comparison of continent-wise unsupervised domain adaption results of source-only SegFormer, Oracle and
DAFormer. Asia: AS, Europe: EU, Africa: AF, North America: NA, South America: SA and Oceania: OC.

of 4.3 to 32.5 and 4.1 to 32.7, respectively. In the or-
der of easiest to challenging class is building, tree, road,
rangeland, developed space,water, agriculture land, and
bareland. The performance change from SegFormer to
DAFormer is shown in Figure 8. Red indicates an improve-
ment whereas blue depicts a decrease in results. In Figure 8,
one can clearly see that DAFormer improved the results in
the challenging classes (e.g., bareland and water).

4. Mapping for Out-of-Sample Images
Figure 9 shows visual comparisons of the Chesa-

peake Bay land cover map with those generated by U-
Net-EfficientNet-B4 models trained on OpenEarthMap,
LoveDA, DeepGlobe, and DynamicEarthNet with the same
implementation details. The results obtained by the Ope-
nEarthMap model demonstrate fine spatial details and se-
mantically consistent mapping with the Chesapeake Bay
land cover map. Note that the maps of the DynamicEarth-
Net model were obtained with the original 1m GSD because

they yielded better results than those processed with 3m
GSD. See Figure 10 for a comparison of mapping results
with the DynamicEarthNet model using images at different
GSDs (i.e., 0.5cm, 1m, and 3m) for inference.

Furthermore, we demonstrate visual results of land
cover mapping for out-of-sample images from France
(MiniFrance [2]), China (LoveDA [21]), Ecuador
(SIGTIERRAS1), and Tanzania (Zanzibar Mapping
Initiative (ZMI)2) in Figures 11, 12, 13, and 14, re-
spectively. These land cover maps were obtained by a
U-Net-EfficientNet-B4 trained on the OpenEarthMap
dataset. One can observe that the results are at a rea-
sonably high resolution. Considering the fact that these
images are not included in the OpenEarthMap dataset, the
results further support the generalization capability of the
OpenEarthMap model.

1http://www.sigtierras.gob.ec/
2http://www.zanzibarmapping.org/



AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

51.8 6.3 5.7 11.7 1.5 13.7

4.9 25.2 6.7 19.1 7.7 16.2

16.1 4.3 42.2 10.5 5.1 11.2

21.3 7.4 20.9 50.4 10.5 32.5

11.8 5.3 8.3 21.7 2.1 15.9

17.6 7.7 12.9 28.9 10.9 57.2

Bareland

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

60.4 39.3 44.6 50.6 57.2 42.8

51.5 46.2 43.7 49.8 53.9 39.8

50.8 40.7 57.0 56.4 58.6 41.6

46.9 37.1 46.2 65.0 54.9 38.1

47.5 31.1 42.0 47.8 61.0 35.6

52.0 39.2 46.8 49.9 55.4 52.6

Rangeland

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

55.8 47.6 41.4 37.3 44.5 53.7

46.4 51.9 40.7 39.7 43.2 51.8

41.7 45.2 52.2 42.4 49.2 48.8

39.0 43.5 40.5 50.9 45.5 46.2

33.1 35.1 34.5 31.7 47.7 39.9

46.5 45.5 41.4 38.6 46.8 60.8

Developed

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

57.6 48.4 47.0 44.4 57.8 60.2

52.4 60.6 51.7 57.3 59.8 61.8

44.1 49.6 57.9 55.2 58.8 57.8

47.9 51.3 51.4 70.1 61.9 62.0

44.1 40.1 42.0 49.7 65.4 51.1

51.2 43.2 47.8 49.2 60.2 67.5

Road

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

66.8 66.5 61.8 60.9 58.1 57.1

63.6 72.1 65.8 65.6 57.6 59.5

62.5 69.7 75.3 64.3 58.7 58.3

55.8 62.2 65.6 74.9 49.8 55.4

58.7 54.9 53.9 55.0 61.0 53.5

59.1 57.6 57.6 56.7 53.2 64.1

Tree

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

80.5 48.1 26.5 30.8 34.0 20.9

66.3 78.5 37.4 58.0 66.5 20.3

59.6 68.7 90.2 73.6 74.6 35.6

57.9 60.9 45.7 87.4 72.9 14.9

46.3 43.3 18.7 34.2 86.6 8.4

53.2 49.2 51.1 47.1 49.4 56.4

Water

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

55.8 59.5 36.4 42.3 44.7 41.8

42.4 84.4 62.0 54.8 79.0 58.7

32.7 70.7 75.5 58.0 84.7 56.6

33.6 66.8 65.8 68.9 79.5 52.8

10.6 36.4 33.7 17.6 88.2 13.2

34.0 64.9 61.6 48.1 78.6 74.2

Agriculture

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce

80.1 67.8 67.4 63.4 81.4 74.8

73.8 77.1 69.4 68.1 80.6 76.8

69.2 67.9 79.5 68.5 82.2 73.1

67.6 65.6 71.1 76.8 81.1 70.6

67.7 61.7 62.2 61.1 82.4 70.5

72.7 66.6 69.2 65.5 80.6 79.8

Building

AF AS EU NA OC SA
Target

AF
AS

EU
NA

OC
SA

So
ur

ce
63.6 47.9 41.3 42.7 47.4 45.6

50.2 62.0 47.2 51.5 56.0 48.1

47.1 52.1 66.2 53.6 59.0 47.9

46.2 49.4 50.9 68.0 57.0 46.6

40.0 38.5 36.9 39.8 61.8 36.0

48.3 46.8 48.6 48.0 54.4 64.1

mIoU

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

40

45

50

55

60

65

70

75

80

Figure 5: Continent-wise UDA results from source-only
U-Net-EfficientNet-B4. Class-specific IoUs and mIoU are
shown in the subfigures with oracle values in the diagonal.
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Figure 6: Continent-wise UDA results from source-only
SegFormer. Class-specific IoUs and mIoU are shown in
the subfigures with oracle values in the diagonal.
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Figure 7: Performance of DAFormer in Continent-wise
UDA. Class-specific IoUs and mIoU are shown in the sub-
figures with oracle values in the diagonal.
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Figure 8: Performance change from SegFormer to
DAFormer in Continent-wise UDA. Class-specific IoUs
and mIoU differences are shown in the subfigures.

5. Attribution of Source Data
Table 6 summarizes attribution of source data for 97 re-

gions in OpenEarthMap. Our label data are provided under
the same license as the original RGB images, which varies
with each source dataset. Label data for regions where the
original RGB images are in the public domain or where the
license is not explicitly stated are licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 9: Visual comparison of Chesapeake Bay land cover map with land cover maps generated by U-Net models trained
on OpenEarthMap, LoveDA, DeepGlobe, and DynamicEarthNet. The NAIP images are the source data.
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Figure 10: Visual comparison of land cover maps generated by U-Net trained on DynamicEarthNet using NAIP images at
different GSDs (i.e., 0.5cm, 1m, and 3m) for inference.

Figure 11: Out-of-sample mapping examples of MiniFrance from France.



Figure 12: Out-of-sample mapping examples of LoveDA from China.

Figure 13: Out-of-sample mapping example of SIGTIERRAS from Ecuador.

Figure 14: Out-of-sample mapping example of ZMI from Tanzania.



Table 6: Attribution of source data of the 97 regions in OpenEarthMap.

Region Country Source data URL Provider License
Christchurch New Zealand AIRS https://www.airs-dataset.com/ Land Information of New Zealand CC BY 4.0
Aachen Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Bielefeld Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Dortmunt Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Dusseldorf Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Koeln Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Muenster Germany GeoNRW https://www.opengeodata.nrw.de/produkte/ German state North Rhine-Westphalia DL-DE-BY-2.0
Chisinau Moldova HTCD https://map.openaerialmap.org Lightcyphers CC BY 4.0
Tyrol Austria Inria https://project.inria.fr/aerialimagelabeling/ Tyrol Public domain
Vienna Austria Inria https://project.inria.fr/aerialimagelabeling/ Vienna Public domain
Austin USA Inria https://project.inria.fr/aerialimagelabeling/ USGS Public domain
Chicago USA Inria https://project.inria.fr/aerialimagelabeling/ USGS Public domain
Kitsap USA Inria https://project.inria.fr/aerialimagelabeling/ USGS Public domain
Dolnoslaskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Kujawsko-pomorskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Lodzkie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Lubuskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Malopolskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Mazowieckie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Podkarpackie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Podlaskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Pomorskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Slaskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Swietokrzyskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Warminsko-mazurskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Wielkopolskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Zachodniopomorskie Poland Landcover.ai https://landcover.ai.linuxpolska.com/ Head Office of Geodesy and Cartography CC BY-NC-SA 4.0
Ngaoundere Cameroon Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Kinshasa Congo Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Pointenoire Congo Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Accra Ghana Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Monrovia Liberia Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Niamey Niger Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Mahe Seychelles Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Dar es salaam Tanzania Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Dar es salaam Tanzania Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Zanzibar Tanzania Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Kampala Uganda Open Cities AI https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/ Global Facility for Disaster Reduction and Recovery CC BY 4.0
Buenos aires Argentina Open data https://map.openaerialmap.org Municipalidad de Pergamino CC BY 4.0
Rosario Argentina Open data https://map.openaerialmap.org Julia Faraudello CC BY 4.0
Melbourne Australia Open data https://map.openaerialmap.org City of Melbourne CC BY 4.0
Cox’s bazar Bangladesh Open data https://map.openaerialmap.org IOM Bangladesh - Needs and Population Monitoring (NPM) Drone CC BY 4.0
Cox’s bazar Bangladesh Open data https://map.openaerialmap.org IOM Bangladesh - Needs and Population Monitoring (NPM) Drone CC BY 4.0
Dhaka Bangladesh Open data https://map.openaerialmap.org AIGEO Center CC BY 4.0
Santiago Chile Open data https://map.openaerialmap.org SECTRA CC BY 4.0
Bogota Colombia Open data https://map.openaerialmap.org Maptime Bogota CC BY 4.0
Svaneti Georgia Open data https://map.openaerialmap.org Transcaucasian Trail Association CC BY 4.0
Accra Ghana Open data https://map.openaerialmap.org Environmental Protection Agency Ghana CC BY 4.0
Western Ghana Open data https://map.openaerialmap.org UMaT YouthMappers CC BY 4.0
Al qurnah Iraq Open data https://map.openaerialmap.org Bilal Koç CC BY 4.0
Kyoto Japan Open data https://maps.gsi.go.jp/development/ichiran.html Geospatial Information Authority of Japan
Tokyo Japan Open data https://maps.gsi.go.jp/development/ichiran.html Geospatial Information Authority of Japan
Monrovia Liberia Open data https://map.openaerialmap.org Uhurulabs CC BY 4.0
Dowa Malawi Open data https://map.openaerialmap.org MapMalawi CC BY 4.0
Ulaanbaatar Mongolia Open data https://map.openaerialmap.org City of Ulaanbaatar and Asia Foundation CC BY 4.0
Maputo Mozambique Open data https://map.openaerialmap.org MapeandoMeuBairro CC BY 4.0
Abancay Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Chiclayo Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Chincha Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Ica Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Lambayeque Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Lima Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Pisco Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Piura Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Sechura Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Viru Peru Open data https://sigrid.cenepred.gob.pe National Center for Disaster Risk Estimation, Prevention and Reduction
Baybay Philippines Open data https://map.openaerialmap.org SkyEye CC BY 4.0
San tome Sao Tome and Principe Open data https://map.openaerialmap.org Drones Adventures CC BY 4.0
Chiangmai Tailand Open data https://map.openaerialmap.org UR Field Lab Chiang Mai CC BY 4.0
Lohur Tajikistan Open data https://map.openaerialmap.org FAZO Institute, Dushanbe, Tajikistan CC BY 4.0
Kagera Tanzania Open data https://map.openaerialmap.org WeRobotics CC BY 4.0
Zanzibar Tanzania Open data https://map.openaerialmap.org Commission for Lands and Revolutionary Government of Zanzibar CC BY 4.0
Tonga Tonga Open data https://map.openaerialmap.org World Bank, V-TOL Aerospace CC BY 4.0
Soriano Uruguay Open data https://map.openaerialmap.org IntelDrones SRL CC BY 4.0
Rio Brazil SpaceNet https://spacenet.ai/spacenet-buildings-dataset-v1/ Maxar CC BY-SA 4.0
Shanghai China SpaceNet https://spacenet.ai/spacenet-buildings-dataset-v2/ Maxar CC BY-SA 4.0
Paris France SpaceNet https://spacenet.ai/spacenet-buildings-dataset-v2/ Maxar CC BY-SA 4.0
Rotterdam Netherlands SpaceNet https://spacenet.ai/sn6-challenge/ Maxar CC BY-SA 4.0
Khartoum Sudan SpaceNet https://spacenet.ai/spacenet-buildings-dataset-v2/ Maxar CC BY-SA 4.0
Vegas USA SpaceNet https://spacenet.ai/spacenet-buildings-dataset-v2/ Maxar CC BY-SA 4.0
Adelaide Australia xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
El rodeo Guatemala xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Jeremie Haiti xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Les-cayes Haiti xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Port-a-piment Haiti xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Saint-louis-du-sud Haiti xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Palu Indonesia xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Labuhan Malaysia xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Mexico city Mexico xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Gorakhpur Nepal xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Pedrogao grande Portugal xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Houston USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Joplin USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Leilane estates USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Little rock USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Oklahoma USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Panama city USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Santa rosa USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Thousand oaks USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Tulsa USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Tuscaloosa USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
Wallace USA xBD https://xview2.org/ Maxar CC BY-NC-SA 4.0
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