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A. Experimental Details

In this section, we first illustrate the architectures of our
framework and the discriminator in Section A.1. Then, we
present the objective functions for training them in Sec-
tion A.2. Additional implementation details are described
in Section A.3.

A.1. Architecture

HIME (small) The overall structure of this network is de-
scribed in the main paper with the following components:
LR feature extraction, HR feature extraction, RFA, CoFA,
and HR reconstruction module. We included a large model
and a small model in this paper, which are different in terms
of the RFA module design.

For the large model, we used the flow-guided deformable
alignment for RFA, which is described in detail in the main
paper. For the small model, instead of using optical-flow
to pre-align the features and guide the offset estimation, we
directly use the LR and ref features to estimate the offsets,
and align the reference features using deformable sampling:

*This work is done during the author’s internship at Meta.
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F refA
i = T (F ref

i ,Φi) = DConv(F ref
i ,∆pi). (1)

where F refA
i denotes the i-th aligned reference feature,

T (·) is the sampling function, and Φi is the corresponding
sampling parameters. The offset for the deformable sam-
pling function are learned based on the similarity between
the reference and input LR features. To make these features
comparable, we take F refL

i and FL, which are both in the
LR space, to predict the offset ∆pi for sampling the F ref

i :

∆pi = g([F refL
i , FL]), (2)

where ∆pi also refers to the sampling parameter Φi; g(·)
denotes a general operation of convolution layers for the
offset estimation; [·, ·] denotes channel-wise concatenation.
Please see Figure 1 for the detailed structure.
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Figure 1: The architecture of RFA used in small models. It
is purely based on deformable sampling.

Discriminators We use the discriminator in Style-
GANv2 [4] as the architecture for the discriminator in our



framework. It includes a convolutional layer and several
residual blocks that downsample the input feature into dif-
ferent scales and turn it into an output tensor as the final
prediction.

A.2. Objective Functions

The loss for training the perception-oriented models is
composed of four parts: the pixel-wise reconstruction loss
Lrec, the adversarial loss Ladv , the perceptual loss Lper,
and our proposed correlation loss Lcor:

LP = λrecLrec + λadvLadv + λperLper + λcorLcor, (3)

where λs are the weights for each loss term. In our imple-
mentation, λrec = 1.0, λadv = 0.1, λper = 0.01, λcor =
0.1. The pixel-wise reconstruction loss and the correlation
loss are already described in the main paper. For the percep-
tual loss, we adopt the structure of VGG-19 [9] and extract
the features Fea before the ReLU layer. The perceptual loss
is measured by L1 distance:

Lper = ||FeaHR − FeaSR||1. (4)

We adopt the relativistic GAN [3] for the Ladv:

Ladv = −EHR[log(1−DRa(IHR, ISR))]−
ESR[log(DRa(ISR, IHR))], (5)

where IHR and ISR stand for the ground-truth and gener-
ated images, respectively. DRa denotes the relativistic av-
erage discriminator, which can be formulated as:

DRa(IHR, ISR) = σ(C(IHR)− ESR[C(ISR)]), (6)

where C(·) is the discriminator output, and σ is the Sig-
moid function, ESR[·] stands for averaging all ISR in a
minibatch. The discriminator loss is defined as:

LD = −EHR[log(DRa(IHR, ISR))]−
ESR[log(1−DRa(ISR, IHR))]. (7)

A.3. Implementation Details

We generate LR inputs by bicubic downsampling with
factor= s. For each LR input, we randomly select three
different HR images to build the reference set during train-
ing. In the evaluation stage, we randomly select reference
images to form an evaluation list. This list is applied to all
evaluated methods for a fair comparison. The correspond-
ing HR image of s× size is used for supervision. We use
the Adam [5] optimizer, decaying the learning rate with a
cosine annealing schedule for each batch [7] starting from
1 × 10−4. For 16 × 16 LR inputs, we set the batch size as
128 and train the network on 1 Nvidia P100 GPU for 8×104

iterations. Our network is implemented with PyTorch [8].

B. Experimental Results

We further evaluate the influence of the difference be-
tween the reference and input images by choosing differ-
ent poses in Sec. B.1. Further experiments with different
thresholds of exemplar numbers are discussed in Sec. B.2.
We discuss the choice of channels in the Ref branch in
Sec. B.3 and evaluate the identity preservation of differ-
ent methods in Sec. B.4. We also discuss the influence of
face chirality under different data augmentation strategies
in Sec. B.5.

B.1. Influence of Reference Images

In this section, we further evaluated the influence of the
pose difference between the reference and the input. To ex-
amine the pose similarity between images, we choose the
Multi-PIE dataset [2], which contains more than 750,000
images of 337 people under 15 view points while displaying
a range of facial expressions. We downsample the Multi-
PIE test data to construct 16× 16 and 128× 128 pairs, and
test our 8× models. We select three different views as ref-
erence images: frontal view (same pose), profile pose 1 and
profile pose 2 (different pose). The pose similarity among
all the three poses are: frontal > profile 1 > profile 2. Un-
like frontal views, some facial components are missing in
the profile faces. We evaluate our model with a single ref-
erence image for simplicity. From the results in Table 1, we
can summarize that using the same pose achieves the best
performance, benefiting from the high similarity between
inputs and references. As for profile faces, the more similar
view contributes better results, which is consistent with our
observation.

Reference Pose PSNR SSIM
Same pose 24.360 0.7304

Profile pose - 1 24.352 0.7304
Profile pose - 2 24.346 0.7303

Table 1: Influence of pose difference between input and ref-
erence images.

B.2. Changing the Threshold of Exemplar Numbers

In the main paper, we construct the multi-exemplar train-
ing and testing data by removing the identities with < 4
exemplars. Still, our proposed method can handle an arbi-
trary number of exemplars. To verify if removing the few-
shot samples introduces bias of the dataset, we change the
threshold of exemplar number to 1, which adds 1629 identi-
ties with 3935 images. Based on the new data, we compared
the performance on the new test data to verify if the pro-
posed method benefit from the previous high-threshold, as
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shown in Tab. 2. We can observe that our method still ben-
efit from the fewer number of exemplars compared to the
non-ref baseline. Besides, we also train the network with
the new training data and show the results in the last row of
Tab. 2. This larger training set improves the PSNR by 0.21
and SSIM by 0.0092.

(LR, s) Methods PSNR SSIM

(16, 8)

Bicubic 21.87 0.5912
non-ref 23.84 0.7087

HIMErec(small) 24.55 0.7410
HIMErec thr=1(small) 24.76 0.7502

Table 2: Results on the new test set with exemplar thresh-
old=1.)

B.3. Color of the Reference Images

Intuitively, we expect the output image should keep con-
sistent color with the LR input, instead of the color from the
reference images. To justify the importance of exemplars’
colors, we conducted an ablation study: comparing with di-
rectly extracting the features from Refs (24.35/0.732), con-
verting the reference images to mono-channel before fea-
ture extraction shows almost no difference (24.34/0.732).
While on the other hand, saving the high-resolution images
in mono-channel can save the storage space as well as re-
duce the number of parameters and computational cost of
the network. Thus, in our proposed network, the reference
images are first converted from the RGB color space into a
mono-channel feature map for a better balance between the
performance and efficiency.

B.4. Evaluate the preservation of identity.

To evaluate if the reconstructed images can preserve the
identity information, we adopt the SOTA face recognition
model ArcFace [1] to calculate the cosine similarity of the
identity features between the ground-truth images and the
ones generated by HIME (small), and show the results in
Tab.3. A higher similarity indicates the identity info is
closer to GT. From this table, we can observe that our
method performs better than the other SOTA methods in
maintaining the identity information, especially HIMErec.
We thank for the constructive feedbacks and include the
new experiments in Appendix B.5.

B.5. Influence of Face Chirality

Typical human faces contain a variety of asymmetries.
[6] brings up the visual chirality in faces and the distribution
bias in public face datasets. Here we compare the influence
of such asymmetries in headshot RefSR to answer the fol-
lowing questions: 1) Does the mismatch between input LR

Methods Bicubic PFSR FSRNet GWAINet
sid ↑ 0.1126 0.3029 0.2082 0.1321

Methods SPARNet PSFR-GAN HIMErec HIMEp

sid ↑ 0.1226 0.2692 0.4408 0.4045

Table 3: Comparison of identity similarity.

and references matter? 2) Does the bias in the training set
influence the reconstruction performance?

Models No-aug Uneven h-flip Even h-flip PSNR↑ SSIM↑
(a)

√
22.60 0.660

(b)
√

22.52 0.654
(c)

√
23.63 0.662

Table 4: Influence of face chirality reflected by different
augmentation strategies.

Tabel 4 shows our experimental results of changing
the augmentation: (a) no augmentation; (b) randomly
horizontal-flip the LR or Ref images, but not both for a
given pair, which introduces the face view mismatch; (c)
randomly horizontal-flip both the LR and reference images,
which balances the number of left and right faces without
introducing mismatches. By comparing (a) and (b), we can
observe that the PNSR drops by 0.08 and the SSIM drops by
0.006, respectively, which indicates that training with mis-
matched views of faces would impair the model’s perfor-
mance. Compared with (a), (c) performs better in terms of
the PSNR and SSIM by a small margin, which demonstrates
that the proper augmentation improves the performance by
mitigating the distribution bias in the dataset.
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