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1. Architecture

In the main article, we have introduced two model set-
tings, small and standard, and the sole difference between
our small and standard settings is to shrink the base chan-
nel number by half. The base channel number is a hyper-
parameter that predominantly affects memory usage of the
model during training and inference. In each encoder and
synthesis block, the channel number N of its convolution
layers is computed by an equation connecting the base chan-
nel number Nbase, the spatial resolution Nres and a pre-
defined max channel Nmax (see Eq. 1). For our small
model, Nbase is set to 16,384. For our standard model,
Nbase is set to 32,768. All models use Nmax equals to 512.

N = min

(
Nbase

Nres
, Nmax

)
(1)

Our experiments showed that the standard model (i.e.
Nbase = 32768) might make the GAN training unstable us-
ing batch size 32 on 4 GPUs. Researchers were suggested
to use 8 GPUs to make the batch size per GPU no larger
than 4 when training the standard model. Nevertheless,
our small model was more friendly towards 4 GPU train-
ing, helping run the experiment with less computational re-
sources. The GPU memory usage on our small and standard
model on resolution 256 and 512 experiments were approx-
imately 10G and 18G per GPU. Remember that our small
model could fit batch size 8 per GPU, two times larger than
the standard model. On the other hand, the model size in
terms of parameters does not significantly differ between
our small and regular settings. For resolution 512, the small
model contains 68.2 million parameters while the standard
model contains 79.8 million parameters (i.e. 17% more pa-
rameters). The model’s sizes are 68.0 million and 79.2 mil-
lion parameters for resolution 256, respectively. In sum-
mary, we list out the detailed architecture in Table 1 for bet-
ter illustrations.

2. Evaluation Details
SH-GAN has been fully implemented in PyTorch. Si-

multaneously, we replicated CoModGAN [7] using Py-
Torch apart from its original TensorFlow implementation.
When we evaluated SH-GAN and CoModGAN, we fol-
lowed the common five-run rules, and we took the mean
values for all scores (i.e. FID, LPIPS, PSNR, and SSIM).
The variations of the results came from three places: a) the
latent codes were randomly sampled from the normal distri-
bution N (0, 1); b) random noises with learned magnitude
were injected into each synthesis block; c) masks were gen-
erated randomly. We noticed a typical ±0.3 on FID score
around the mean, which aligned with our expectation.

For other models, we used our mask generation rules
to create several sets of fixed masks and then evaluated
these models using the official demo code provided in their
Github. LaMa [3] and Onion-Conv [2] mentioned in their
work that they applied the same model for all resolutions;
thus, we followed their evaluation scheme. For Deep-
FillV2 [4] and CR-Fill [6], we downloaded separate models
for resolutions 256 and 512; thus, we evaluated using these
models correspondingly. For MADF [9] and AOT-GAN [5],
they only provided resolution 512 models. Therefore, in our
resolution 256 evaluations, we upsampled both images and
masks into 512×512, executed the model, and then down-
sampled the output images back to 256×256. CR-Fill [6]
and Onion-Conv [2] didn’t train on face datasets, so we
skipped those experiments.

3. Masks
As mentioned in section 3.4 of the main article, we

followed the same algorithm as DeepFillv2 [4] and Co-
ModGAN [7] to generate free-form masks for training and
evaluation. Besides, we adopted the LaMa-style [3] narrow
and wide masks to extend our evaluation beyond free-form
masks scenarios. We use the official code downloaded from
LaMa’s Github to generate both narrow and wide masks.
We list visualization for all three types of masks in figure 1.
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512× 512
conv1×1 (4 → 32 ) conv1×1 (4 → 64)
conv3×3 (32 → 32) conv3×3 (64 → 64)
conv3×3 (32 → 64, ds) conv3×3 (64 → 128, ds)

256× 256
conv1×1 (4 → 64) conv1×1 (4 → 128)
conv3×3 (64 → 64) conv3×3 (128 → 128) conv3×3 (64 → 64) conv3×3 (128 → 128)
conv3×3 (64 → 128, ds) conv3×3 (128 → 256, ds) conv3×3 (64 → 128, ds) conv3×3 (128 → 256, ds)

128× 128
conv3×3 (128 → 128) conv3×3 (256 → 256) conv3×3 (128 → 128) conv3×3 (256 → 256)
conv3×3 (128 → 256, ds) conv3×3 (256 → 512, ds) conv3×3 (128 → 256, ds) conv3×3 (256 → 512, ds)

64× 64
conv3×3 (256 → 256) conv3×3 (512 → 512) conv3×3 (256 → 256) conv3×3 (512 → 512)
conv3×3 (256 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (256 → 512, ds) conv3×3 (512 → 512, ds)

32× 32
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds)

16× 16
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds)

8× 8
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds) conv3×3 (512 → 512, ds)

4× 4
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
fc (512× 4× 4 → 1024) fc (512× 4× 4 → 1024) fc (512× 4× 4 → 1024) fc (512× 4× 4 → 1024)
dropout dropout dropout dropout
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4× 4
fc (1024 → 512× 4× 4) fc (1024 → 512× 4× 4) fc (1024 → 512× 4× 4) fc (1024 → 512× 4× 4)
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
torgb (512 → 3) torgb (512 → 3) torgb (512 → 3) torgb (512 → 3)

8× 8
conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us)
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
torgb (512 → 3) torgb (512 → 3) torgb (512 → 3) torgb (512 → 3)

16× 16
conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us)
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
torgb (512 → 3) torgb (512 → 3) torgb (512 → 3) torgb (512 → 3)

32× 32
conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us) conv3×3 (512 → 512, us)
conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512) conv3×3 (512 → 512)
torgb (512 → 3) torgb (512 → 3) torgb (512 → 3) torgb (512 → 3)

64× 64
conv3×3 (512 → 256, us) conv3×3 (512 → 512, us) conv3×3 (512 → 256, us) conv3×3 (512 → 512, us)
conv3×3 (256 → 256) conv3×3 (512 → 512) conv3×3 (256 → 256) conv3×3 (512 → 512)
torgb (256 → 3) torgb (512 → 3) torgb (256 → 3) torgb (512 → 3)

128× 128
conv3×3 (256 → 128, us) conv3×3 (512 → 256, us) conv3×3 (256 → 128, us) conv3×3 (512 → 256, us)
conv3×3 (128 → 128) conv3×3 (256 → 256) conv3×3 (128 → 128) conv3×3 (256 → 256)
torgb (128 → 3) torgb (256 → 3) torgb (128 → 3) torgb (256 → 3)

256× 256
conv3×3 (128 → 64, us) conv3×3 (256 → 128, us) conv3×3 (128 → 64, us) conv3×3 (256 → 128, us)
conv3×3 (64 → 64) conv3×3 (128 → 128) conv3×3 (64 → 64) conv3×3 (128 → 128)
torgb (64 → 3) torgb (128 → 3) torgb (64 → 3) torgb (128 → 3)

512× 512
conv3×3 (64 → 32, us) conv3×3 (128 → 64, us)
conv3×3 (32 → 32) conv3×3 (64 → 64)
torgb (32 → 3) torgb (64 → 3)

Table 1: The detail architecture of the encoder and synthesis network in our small and standard SH-GAN. All convolution layers are
followed by the leaky ReLU activation with α = 0.2. Annotation ds and us means downsample and upsample. The torgb layer is
a conv1×1 layer that converts image features into RGB images, which will be aggregated in parallel with the main architecture. For
simplicity, we don’t list out the mapping network, which is a sequential network with eight 512 to 512 fully connected layers plus ReLU.
We don’t list our Spectral Hint Unit (SHU) as well. SHU details can be found in the main article.

As shown, narrow masks yield more and thinner strokes,
while wide masks yield fewer and broader strokes. Both
narrow and wide masks yield easier inpainting cases than
the regular free-form masks we used in the main article.
Moreover, we performed both quantitative and qualitative
evaluations on these masks. Please see the following sec-
tions for more details.

4. Extra Results
As mentioned in the last section, we extensively tested

the robustness of the good performance of SH-GAN beyond
free-form mask scenarios, using LaMa-style [3] narrow and
wide masks. All quantitative results are listed in Table 2
and 3. Like in the main article, we tested all approaches
with resolutions 256 and 512, using dataset FFHQ [1] and



(a) Free-form mask (b) Narrow mask (c) Wide mask

Figure 1: The three types of masks we use in our experiments. The 1-value (white) represents known pixels and the 0-value (black)
represents the unknown pixels.

FFHQ 256 Places2 256
narrow wide narrow wide

Method FID(↓) LPIPS(↓) FID(↓) LPIPS(↓) FID(↓) LPIPS(↓) FID(↓) LPIPS(↓)

CoModGan (small) 2.0327 0.0430 2.5680 0.1235 1.7972 0.0880 3.4491 0.2022
CoModGan (official) 1.7082 0.0411 2.4859 0.1224 1.5214 0.0857 3.3955 0.2016
LaMa 4.6266 0.0418 8.5166 0.1169 11.4755 0.0746 12.6746 0.1792
DeepFillV2 8.5031 0.0673 14.7631 0.1531 15.0309 0.0980 20.6116 0.2160
CR-Fill - - - - 12.5929 0.0935 18.1343 0.2036
Onion-Conv - - - - 15.0021 0.1107 18.2985 0.2239
MADF 1.5619 0.0312 7.3928 0.1257 10.4441 0.0730 20.0603 0.2023
AOT-GAN 2.1126 0.0355 15.6649 0.1576 9.9570 0.0843 26.5505 0.2353

(ours - small) 2.0790 0.0437 2.5108 0.1222 1.5607 0.0867 3.0663 0.2000
(ours - regular) 1.6847 0.0414 2.3336 0.1214 1.3084 0.0832 2.7853 0.1982

Table 2: The performance on resolution 256 with LaMa-style [3] narrow and wide masks.

FFHQ 512 Places2 512
narrow wide narrow wide

Method FID(↓) LPIPS(↓) FID(↓) LPIPS(↓) FID(↓) LPIPS(↓) FID(↓) LPIPS(↓)

CoModGan (small) 1.4628 0.0585 2.8030 0.1936 1.2474 0.0998 4.8398 0.2574
CoModGan (official) 1.2668 0.0546 2.7336 0.1925 1.0363 0.0940 4.5978 0.2566
LaMa 2.3060 0.0608 11.6739 0.2162 1.2551 0.0884 7.6624 0.2425
DeepFillV2 9.0039 0.1156 19.9922 0.2361 2.0743 0.1003 18.3419 0.2871
CR-Fill - - - - 1.7619 0.0916 14.8824 0.2675
Onion-Conv - - - - 3.1910 0.1149 14.0048 0.2999
MADF 1.4295 0.0544 11.2990 0.2041 1.0556 0.0751 18.4953 0.2532
AOT-GAN 1.7366 0.0516 23.6286 0.2458 1.3204 0.0808 28.4871 0.2950

(ours - small) 1.4070 0.0592 2.7658 0.1934 1.1583 0.0993 4.4051 0.2570
(ours - regular) 1.2053 0.0550 2.6009 0.1901 0.9307 0.0916 3.9755 0.2532

Table 3: The performance on resolution 512 with LaMa-style [3] narrow and wide masks.

Places2 [8]. As shown in the tables, our SH-GAN still out-
performs other methods in terms of FID in all experiments,
demonstrating that SH-GAN is effective under a wide vari-

ety of inpainting cases.



5. Visualization
In addition to the demo we showed in the main article,

we generated more images by our SH-GAN and other ap-
proaches and qualitative compared them side by side in Fig-
ure 3. Other than that, we also generate images using LaMa-
style [3] narrow and wide mask and listed them accordingly
in Figure 4 and 5.

6. Controllable Editing
Controllable editing is one downstream application with

excellent potential for SH-GAN in production. The defi-
nition of the task is to fill the missing region of an image
I with guidance from a reference image IR. During infer-
ence, we pass both I , IR, and the mask into the encoder. We
then modulate our synthesis network using the global vec-
tor from IR, and connect other intermediate features from
I . Remind that this application is also feasible for Co-
ModGAN [7] but not for LaMa [3] and other approaches.
The results are shown in Figure 2, in which we success-
fully transit parts of the reference face into the designated
regions.
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Figure 2: Controllable editing on different source and reference
images from FFHQ.
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Input AOT-GAN DeepFillV2 MADF LaMa CoModGAN (ours)

Figure 3: More qualitative examples between prior approaches and SH-GAN using free-form masks. Please zoom in for a better view.



Input AOT-GAN DeepFillV2 MADF LaMa CoModGAN (ours)

Figure 4: Qualitative examples between prior approaches and SH-GAN using narrow masks. Please zoom in for a better view.
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Figure 5: Qualitative examples between prior approaches and SH-GAN using wide masks. Please zoom in for a better view.


