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This supplementary material provides additional results
on boundary detection benchmarks, ablation study on post-
processing effects on semantic segmentation, training set-
tings and more qualitative results of the attention maps and
output predictions.

1. Full Results on Boundary Detection
To complete the results in Table 5 and Table 6 in the

main paper, we provide the full evaluation results on the
BSDS500 [1] and the NYUDv2 [10].

In Table 1, we show more evaluation results of using
the PASCAL VOC Context dataset (PVC) [7] as additional
training data and multi-scale inference for BSDS500. When
using PVC, we double our training epochs to account for the
additional data. For multi-scale inference, we use standard
average pooling for fair comparison with other methods.
AFA-DLA achieves state-of-the-art results on single-scale
inference when not training with additional data. Surpris-
ingly, using PVC does not further improve the results. Nev-
ertheless, AFA-DLA achieves the same performance with
the state-of-the-art method BDCN [5] when using multi-
scale inference.

In Table 2, we report more evaluation results of us-
ing three different types of inputs. Our AFA-DLA model
outperforms all other methods by a large margin across
all three types of inputs, achieving state-of-the-art perfor-
mances. When only using RGB images as input, AFA-DLA
already outperforms some other methods using both RGB
and HHA images.

2. Ablation Study on Post-processing of Se-
mantic Segmentation

To have a fair competition with other methods, we ex-
ploit several post-processing techniques to pursue higher
performance. We conduct an ablation study on how
each technique affects the final performance on the
Cityscapes [3] validation set in Table 3. The main improve-

Table 1. Boundary detection results on BSDS500. PVC indicates
training with additional PASCAL VOC Context dataset. MS in-
dicates multi-scale inference. AFA-DLA achieves state-of-the-art
results on single-scale images without using additional data, and
competitive results when using both PVC and MS.

Method PVC MS ODS OIS

Human 0.803 0.803

DLA [14] 0.803 0.813
LPCB [4] 0.800 0.816
BDCN [5] 0.806 0.826
AFA-DLA (Ours) 0.812 0.826

RCF [6] ✓ 0.808 0.825
LPCB [4] ✓ 0.808 0.824
BDCN [5] ✓ 0.820 0.838
PiDiNet [11] ✓ 0.807 0.823
AFA-DLA (Ours) ✓ 0.810 0.826

RCF [6] ✓ ✓ 0.814 0.833
LPCB [4] ✓ ✓ 0.815 0.834
BDCN [5] ✓ ✓ 0.828 0.844
AFA-DLA (Ours) ✓ ✓ 0.828 0.844

ment gains are from our Scale Space Rendering (SSR) for
multi-scale inference, and the other techniques only bring
minor improvements.

3. Training Losses
In this section, we describe in more detail the formula-

tion of our loss function for AFA-DLA for both semantic
segmentation and boundary detection.

3.1. Semantic Segmentation

We use k scales for training and RMI [17] to be the pri-
mary loss for our final prediction Pfinal, i.e.,

Lprimary ≜ Lrmi(P̂ , Pfinal) , (1)



Table 2. Boundary detection results on NYUDv2 using three dif-
ferent types of inputs. AFA-DLA achieves state-of-the-art results
across all three settings.

Method Input ODS OIS

AMH-Net [6]

RGB

0.744 0.758
BDCN [5] 0.748 0.763
PiDiNet [11] 0.733 0.747
AFA-DLA (Ours) 0.762 0.775

AMH-Net [6]

HHA

0.716 0.729
BDCN [5] 0.707 0.719
PiDiNet [11] 0.715 0.728
AFA-DLA (Ours) 0.718 0.730

AMH-Net [6]

RGB+HHA

0.771 0.786
BDCN [5] 0.765 0.781
PiDiNet [11] 0.756 0.773
AFA-DLA (Ours) 0.780 0.792

where P̂ is the ground truth and Lrmi is the RMI loss
function. The first auxiliary cross-entropy loss is com-
puted by using the generated scale-space rendering (SSR)
attention to fuse the auxiliary per-scale predictions from the
OCR [15] module, yielding

Locr ≜ Lce(P̂ , P aux
ocr ) , (2)

where Lce denotes the cross-entropy loss. For the second
auxiliary loss, we compute and sum up cross-entropy losses
for each scale prediction Pi, where 1 ≤ i ≤ k, yielding

Lscale ≜
k∑

i=1

Lce(P̂ , Pi) . (3)

Lastly, for the auxiliary loss inside AFA-DLA, we fuse the
predictions of each auxiliary segmentation head with SSR
across scales and get P aux

j , where 1 ≤ j ≤ 4. We compute
the auxiliary loss for each prediction and sum them up as

Laux ≜
4∑

j=1

Lce(P̂ , P aux
j )) . (4)

Accordingly, the total loss function is the weighted sum as

Lseg ≜ Lprimary + βoLocr + βsLscale + βaLaux, (5)

where we set βo = 0.4, βs = 0.05, and βa = 0.05.

3.2. Boundary Detection

For boundary detection, we opted to using a simpler ver-
sion of the loss function for semantic segmentation. We use
standard binary cross entropy (BCE) to be the primary loss
for our final prediction Pfinal, i.e.,

Lprimary ≜ Lbce(P̂ , Pfinal) , (6)

Table 3. Ablation study on Cityscapes validation set with AFA-
DLA-X-102 for validating each post-processing technique. SSR
indicates our Scale Space Rendering.

SSR Flip Seg-Fix [16] mIoU

- - - 83.06
✓ - - 84.81
✓ ✓ - 85.00
✓ ✓ ✓ 85.10

Table 4. Specific training settings for each dataset. BS stands for
training batch size.

Dataset Crop Size BS Training Epochs

Cityscapes 2048× 1024 8 375
BDD100K 1280× 720 16 200
BSDS500 416× 416 16 10
NYUDv2 480× 480 16 54

where P̂ is the ground truth and Lbce is the BCE loss func-
tion.

We also use auxiliary segmentation heads to make pre-
dictions at each feature level. Each prediction P aux

j , where
1 ≤ j ≤ 4, is upsampled to the original scale and the BCE
loss is used to compute the auxiliary loss, i.e.,

Laux ≜
4∑

j=1

Lbce(P̂ , P aux
j )) . (7)

Accordingly, the total loss function is the weighted sum as

Lbd ≜ Lprimary + βaLaux, (8)

where we set βa = 0.05.

4. Implementation Details
We provide the general training setting and proce-

dure used for training on Cityscapes [3], BDD100K [13],
BSDS500 [1], and NYUDv2 [10].

We use PyTorch [8] as our framework and develop based
on the NVIDIA semantic segmentation codebase 1. The
general training procedure is using SGD [9] with momen-
tum of 0.9 and weight decay of 10−4. Specific settings for
each dataset are shown in Table 4.

4.1. Semantic Segmentation

We use an initial learning rate of 1.0 × 10−2. We use
the learning rate warm-up over the initial 1K training itera-
tions and the polynomial decay schedule, which decays the
initial learning rate by multiplying (1− epoch

max epochs
)0.9 every

1NVIDIA license: https://github.com/NVIDIA/
semantic-segmentation/blob/main/LICENSE

https://github.com/NVIDIA/semantic-segmentation/blob/main/LICENSE
https://github.com/NVIDIA/semantic-segmentation/blob/main/LICENSE
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Figure 1. Notation of aggregated features of AFA-DLA.

epoch. We apply random image horizontal flipping, ran-
domly rotating within 10 degrees, random scales from 0.5
to 2.0, random image color augmentation, and random crop-
ping. As in [18], we also use class uniform sampling in the
data loader to overcome the data class distribution unbal-
ance problem. Due to limitations in computational power,
we further use Inplace-ABN [2] to replace the batch norm
and ReLU function to acquire the largest possible training
crop size and batch size on 8 Tesla V-100 32G GPUs.

4.2. Boundary Detection

We use an initial learning rate of 1.0× 10−2 and a batch
size of 16 for both BSDS500 [1] and NYUDv2 [10]. We
use the step decay schedule and drop the learning rate by
10 times at around 0.55 × max epochs and then again at
0.85× max epochs. For augmentation, we follow the stan-
dard protocol in literature [12, 6] and apply random flipping,
scaling by 0.5 and 1.5, and rotation by 16 different angles.
We train all our models on a single GeForce RTX 2080Ti
GPU.

5. Visualization of Attention Maps
In this section, we provide more visualizations of atten-

tion maps generated by our proposed AFA module. For ref-
erence, we provide a detailed architecture of AFA-DLA and
denote the notation of aggregated features of different levels
in Figure 1.

We first look at the attention maps generated by our bi-
nary fusion module which aggregates two features in Fig-
ure 2 and Figure 3. We provide the spatial attention maps
for binary fusion at four different levels. When the differ-
ence of the level information between two input features is
larger (e.g., L3

4 and L3
5), our attention mask will become

more specific and be able to focus on the right place to be
fused. Take the fusion of L3

4 and L3
5 as example. Since L3

4

contains the information of the L1 feature, our attention fo-
cuses on object boundaries on it and attend to the rest on
L3
5, which has richer semantic information. Compared to

linear fusion operations, our AFA module provides a more
expressive way of combining features.

We additionally look at the spatial attention maps gen-
erated by our multiple feature fusion module in Figure 4.
Only using the final aggregated features for prediction may
cause our model to overly focus on low level features. Thus,
our multiple feature fusion module provides the model with
more flexibility to select between the features that contain
different low level information. For input features that con-
tain L1 information like L4

5 and L3
5, the attention focuses

more on the object boundaries, similar to our binary fusion
module. For other input features like L2

5, the attention can
focus on objects or the background. With our multiple fea-
ture fusion module, our model can strike a balance between
the low-level and the high-level information and perform
fusion accordingly.

6. Qualitative Results
We provide more qualitative results in this section to vi-

sualize AFA-DLA’s predictions. We show full predictions
of AFA-DLA on Cityscapes in Figure 5, BDD100K in Fig-
ure 6, BSDS500 in Figure 7, and NYUDv2 in Figure 8.
The results on Cityscapes show that our model can handle
both fine and coarse details well and is robust towards dif-
ferent input scenes. On BDD100K, the results show the
ability of our model to handle more diverse urban scenes,
with varying weather conditions and times of the day. On
both BSDS500 and NYUDv2, our model can predict both
fine-grained scene details as well as object-level boundaries.
In particular, on NYUDv2, our model can recover more
boundaries than the ground truth. With results across dif-
ferent types of datasets and both semantic segmentation and
boundary detection, AFA-DLA demonstrates its strong per-
formance and applicability for dense prediction tasks.
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Figure 2. Spatial attention maps at four different levels generated by our binary fusion module which aggregates two features. Whiter
regions denote higher attention. Compared to linear fusion operations, our AFA module provides a more expressive way of combining
features.
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Figure 3. Spatial attention maps at four different levels generated by our binary fusion module which aggregates two features. Whiter
regions denote higher attention. Compared to linear fusion operations, our AFA module provides a more expressive way of combining
features.
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Figure 4. Spatial attention maps generated by our multiple feature fusion module which aggregates multiple features. Whiter regions
denote higher attention. With our multiple feature fusion module, our model can strike a balance between the low-level and the high-level
information and perform fusion accordingly.

Input Ground Truth Prediction

Figure 5. The qualitative results of AFA-DLA-X-102 on the Cityscapes validation set. Our model can handle both fine and coarse details
well and is robust towards different input scenes.
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Figure 6. Qualitative results of AFA-DLA-169 on the BDD100K validation set. Our model can handle diverse urban scenes, with varying
weather conditions and times of the day.
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Figure 7. Qualitative results of AFA-DLA-34 on the BSDS500 test set. Results are raw boundary maps obtained using multi-scale
inference before Non-Maximum Suppression. Our model can predict both fine-grained scene details and object-level boundaries.
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Figure 8. Qualitative results of AFA-DLA-34 on the NYUDv2 test set. Results are raw boundary maps obtained by averaging predictions
on both RGB and HHA images before Non-Maximum Suppression. Our model can extract more boundaries than the ground truth.


