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A. Proof of Lemma 1
Before the proof, two concepts are vital to be

clarified. First, f∗(·) is the function of two func-
tions: the IPM function conditioned on parame-
ters in the discriminator function. In other words,
f∗(·) = IPM(D(·)), where D(·) is the discrimi-
nator function. Second, D(·) gains its Lipschitz
continuity from spectral normalization[6] or gradi-
ent penalty[1]. In practice, the original MMD-GAN
defined an auto-encoder as its discriminator. At the
same time, other IPM-GANs normally use a binary
classifier or an encoder to map input image space to
an implicit feature space. Thus, output space is also
bounded if input space is bounded and vice versa.
Our methods followed the repulsive MMD-GAN’s
discriminator mapping real or fake images to a multi-
dimensional feature space. Thus, f∗(·) is bounded,
and the additive linear operation in Lemma 1 does
not change this property. As a result, the sum of
f∗
q (r) + f∗

q (g) is still a real-valued bounded mea-
surable function (assuming q as the intermediate
distribution).

Proof. From [5] we can see if inputs to be measured
in a topological space, Lemma 1 can work as the
adversarial divergence. Hereon, the emphasized ‘in-
puts’ are the ad hoc sets of the discriminator outputs,
D(·). Traditionally defined ‘source distribution’ in
our equations changes from the generated fake distri-
bution to real or fake distributions. Meanwhile, tra-
ditionally defined ‘target distribution’ changes from

the real distribution to the intermediate distribution,
which is not in contrast to the requirement of a fixed
target distribution as in [5]. Also, because the sum
of the witness functions from real and fake sources
is a real-valued bounded measurable function, such
adversarial divergence can satisfy the definition of
IPM-GANs[5, 7, 8].

MMDq=δ(real, fake) =

inf
G

sup
f∗∈H

∣∣Er∼real[||D(r)− 0||2H]

+ Eg∼fake[||D(g)− 0||2H]
∣∣,

MMDq=N (real, fake) =

inf
G

sup
f∗∈H

∣∣Er∼real,N∼N [||D(r)−N ||2H]

+ Eg∼fake,N∼N [||D(g)−N ||2H]
∣∣.

In MMD(δ) or MMD(N ), real and fake inputs
are mapped to the Reproducing Kernel Hilbert
Space (RKHS,H), which is the same as the original
MMD-GAN[3], thus such mapping can satisfy the
witness function [7] and never violate Lemma 1.

KSDq=U (real, fake) =

inf
G

sup
f∗∈H

∣∣Er,r′∼real[uU (D(r),D(r′))]

+ Eg,g′∼fake[uU (D(g),D(g′))]
∣∣,
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Figure 1: Discriminator outputs distributions of real and fake samples for MMD(Rep.) in (a) and MMD(δ) in (b).

KSDq=N (real, fake) =

inf
G

sup
f∗∈H

∣∣Er,r′∼real[uN (D(r),D(r′))]

+ Eg,g′∼fake[uN (D(g),D(g′))]
∣∣.

Intermediate distribution in KSD-based [4]
losses holds the implicit intermediate distribution,
unlike the explicit random samples in MMD(δ) and
MMD(N ). In the KSD objective functions, because
uq(·) kernel also mapping D(·) inputs to RKHS,
hence satisfying the witness function [7]. Thus our
methods can inherit conclusions of the weak-∗ con-
vergence as other types of IPM-GANs from the past
literature[5].

B. Mismatching Problem

Based on the definition of KSD, the p.d.f. in the
score function does not require an accurate normal-
ization parameter. Such a non-parametric feature
makes KSD very convenient in many aspects of
machine learning topics, while it may cause the
mismatching problem about the output scale at the
initial steps of the adversarial training process. Here
we found that adding a bound on the RBF kernel
in the KSD objective functions to limit the output
scale of the discriminator can avoid the mismatching
problem efficiently. The hinged kernel is defined as

follow [9]:

kRBF

(
D(g),D(g′)

)
=

exp
( 1

2σ2
max(∥D(g)−D(g′)∥2 , bl)

)
,

kRBF

(
D(r),D(r′)

)
=

exp
( 1

2σ2
min(∥D(r)−D(r′)∥2 , bu)

)
,

where σ is the bandwidth of the RBF kernel. bl and
bu are the lower and upper bound. The hinged kernel
was set as bl = 0.5, bu = 2 for KSD experiments
and bl = 0.25, bu = 4 for MMD experiments.

C. Details from MMD(Rep.) to MMD(δ)

As introduced in Section ‘Indirect Adversarial
Losses’ in the main paper, we rewrite the repulsive
MMD discriminator loss as the zero-centered loss
based on the original MMD function with regular-
ization terms, which can achieve repulsiveness other
than [9]. The meaning of MMD(δ) is the difference
of two mathematically defined standard MMD dis-
tances. In contrast, MMD(Rep.) is the difference
between two kernels, which does not have a clear
mathematical meaning based on the standard MMD
function.



Here we list the detailed equations:

MMD(δ) = MMD(p,O)−MMD(q,O))
= Ex∼p[k(D(x),D(x′))]− 2 ∗ Ex∼p[k(D(x), 0)]
− Ey∼q[k(D(y),D(y′))] + 2 ∗ Ey∼q[k(D(y), 0)]
= MMD(Rep.) + exp(−γ ∗ ||D(x)||22)
− exp(−γ ∗ ||D(y)||22)
∝MMD(Rep.) + ||D(x)||2 − ||D(y)||2.

From the equation above, we can conclude the
difference between our intermediate-based MMD(δ)
and MMD(Rep.). In MMD(Rep.) [9], such loss
only focuses on the intra-distance of real or fake
distributions. In contrast, our zero-centered loss
also limits the possibility of avoiding real outputs
being too far away from zeros and stopping fake
outputs from being too close to the zeros.

Here we introduce real and fake cases, respec-
tively. For fake outputs, as shown in Fig 1a, fake
outputs may be concentrated towards the zero point
(also shown in its official demonstration1), which
can hardly bring too much information in numeric.
While ours can avoid such a demerit as MMD(δ)
maximizes the distance between fake outputs and
the zero point. For real outputs, in MMD(Rep.),
the center of real outputs in one mini-batch does
not matter because such a loss only maximizes the
intra-distance of real outputs. Thus, the first-order
moment of the distribution of the real outputs was
detached. While our MMD(δ) still keeps the same
physical means as the original MMD (while toward
zero), considering every order of moments. Besides,
the E[k(D(x),D(x’))] term prevents real outputs be-
come too small when moving such digits towards
the zero in MMD(δ), which is the same function as
achieving the repulsiveness in MMD(Rep.).

Our generator loss follows the same logic.
MMD(Rep.) discriminator loss does not have a
clear physical meaning, so it is hard to create a cor-
responding generator loss. Using original MMD
loss directly can make it work while lacking the
guarantee of convergence from past works. Our
intermediate-distribution-based losses have physical

1https://github.com/richardwth/MMD-GAN

meanings and can follow past literature, as shown
in Appendix A.

All in all, the proposed intermediate-distribution-
based MMD function achieved repulsiveness, which
is different from the repulsive MMD-GAN [9], by
avoiding using the negative MMD function for real
sources (as in original MMD-GAN [3]).

D. Algorithm

Algorithm 1 KSD-GAN, our proposed algorithm.
Input: learning rates (αg, αd), batch size B, dis-
criminator iterations n per generator step, training
data distribution p, intermediate distribution q.
Parameter: G parameters θ, D parameters
ϕ.

1: Initialize θ and ϕ ;
2: while θ has not converged do
3: for j = 1,...,n do
4: Sample real samples {ri}Bi=1 ∼ p and i.i.d.

noises {zi}Bi=1 ∼ N (0, 1)
5: Generate fake samples {gi}Bi=1 ←

Gθ(z1)...Gθ(zB)
6: Compute LD
7: Update ϕ′ ← ϕ−Adam(αd, ϕ,▽ϕLD)
8: end for
9: Sample i.i.d. noises {zi}Bi=1 ∼ N (0, 1)

10: Generate fake samples {gi}Bi=1 ←
Gθ(z1)...Gθ(zB)

11: Compute LG
12: Update θ′ ← θ −Adam(αg, θ,▽θLG)
13: end while

D.1. Complexity

Our KSD-based loss functions are computed with
the outputs of the discriminator. Dislike Wasser-
steinGAN or Vanilla GAN, our discriminator has
multi-dimensional outputs, just like repulsive MMD-
GAN. Assuming that the batch size in one gener-
ation step is B, the number of output dimensions
in the discriminator is d. Thus the computational
complexity is O(d2B) for our KSD-GAN and re-
pulsive MMD-GAN (typically d varies from 16 to
64 and has a better performance as in [9]); the com-



plexity is O(dB) for WassersteinGAN and Vanilla
GAN (normally d = 1). Therefore, our KSD-GAN
and repulsive MMD-GAN will have a considerably
larger computational complexity in loss functions
and the last layer of the discriminator. Finally, these
will result in more than 10% longer training time
than single-dimensional discriminators during each
training iteration in our experiments.

E. Diversity
Here we show the diversity results with mean,

max, min and variance statistics in box maps in 2.

F. Visualization on the output distribu-
tion

For testing the learning ability for inherent fea-
tures, we trained MNIST [2] based on the DCGAN
architecture without conditional labels in Fig. 4 and
visualized outputs of the discriminator for real im-
age inputs and in Fig. 3.

G. Extra Samples for Experiments
In our experiments, because CelebA dataset con-

tains almost two times of images compared to an-
other 64x64 resolution dataset Mini-ImageNet, we
generate CelebA images within 50k training itera-
tions to keep a reasonable total training time con-
sumption. In this case, repulsive MMD-GAN can-
not obtain convergence results while others can
achieve reasonable FID scores. If we feed the model
within enough training iterations (200k), all mod-
els can converge and obtain further improvements
on FID scores of KSD-GAN, as shown below. We
show random samples for CIFAR10, CIFAR100,
and Mini-ImageNet and CelebA experiments as sup-
plements in Fig. 5,6,7.
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Figure 2: LPIPS (higher is better) box-plots among different classes in three datasets. For every dataset, we first calculated
the LPIPS score for each class and then drew the box-plot among all the classes and repeat steps for different settings.
Green triangles indicate mean values and yellow lines are median numbers.

(a) Vanilla(JS) (b) Wasserstein (c) MMD(Rep.) (d) KSD(U ) (e) KSD(N )

Figure 3: MNIST visualization maps for discriminator outputs from random samples. We first train an unconditional
DCGAN and then visualize the output for the discriminator for real image inputs and label them with colors. Our method
can acquire the inherent relations among classes.

(a) KSD(U) (b) KSD(N) (c) Wasserstein (d) Repulsive-MMD

Figure 4: MNIST random samples on DCGAN.



(a) Vanilla(JS) (IS:10.48) (b) Was. (IS:12.67)

(c) Rep. (IS:6.08) (d) KSD(U) (IS:12.71)

Figure 5: Random samples of Mini-ImageNet experiments.



(a) KSD (50k) (b) KSD (FID:3.63)

(c) Was. (50k) (d) Was. (FID:7.13)

(e) Rep. (50k) (f) Rep. (FID:12.78)



(g) Vanilla(JS) (50k) (h) Vanilla(JS)(FID:8.53)

Figure 6: Generation samples of CelebA after 50k and 200k training iterations.

(a) Vanilla(JS) (b) Was. (c) Rep. (d) KSD

(e) Vanilla(JS) (f) Was. (g) Rep. (h) KSD

Figure 7: Demonstrations of random samples from vanilla GAN, Wasserstein-GAN, Repulsive MMD-GAN, and KSD-
GAN on Cifar10 (a,b,c,d) and Cifar100 (e,f,g,h). For KSD samples, we use the best-performed settings in Table 3 in main
content.


