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1. Supplementary
Since there does not exist a golden-standard vision

transformer backbone in unsupervised domain adaptation
(UDA), several contemporary work [14, 12, 9] use DeiT
[11] and Swin [7] in their experiments. Specifically, CD-
Trans [14] and WinTR [9] use DeiT-S and DeiT-B, while
BCAT [12] uses Swin-B. Table 1 shows the detailed com-
parison between different vision transformers. It is notewor-
thy that previous CNN-based methods mainly use ResNet-
50 (23M parameters) as the backbone in the Office-Home
and Office-31 datasets, and use ResNet-101 (45M parame-
ters) in the VisDA-2017 dataset. For a fair comparison with
CNN-based counterparts, it is critical to guarantee a com-
parable backbone size. According to Table 1, DeiT-S or
Swin-T can be used as the backbone in the Office-Home and
Office-31 datasets, while Swin-S can be used in the VisDA-
2017 dataset. Therefore, we replace ViT [3] in our proposed
framework with Swin to check its generalization ability.

1.1. Swin-based TVT

Different from ViT which uses an additional class to-
ken for classification, Swin applies a global average pool-
ing (GAP) layer on the output patches fir of the last stage,
where i and r indicate the index of the input image and im-
age patches, respectively. To adopt Swin in our TVT frame-
work, we apply the patch-level domain discriminator Dl to
fir and obtain the transferability of each output patch by
tir = H(Dl(fir)) ∈ [0, 1], where H(·) is the standard en-
tropy function. After that, we apply the element-wise mul-
tiplication to fir and tir, followed by a GAP layer and a
linear classifier.

1.2. Implementation Details

The Swin-T and Swin-S with 4×4 input patch size and
7×7 window size [7] pre-trained on ImageNet-1K [2] are
used as our backbone. The architecture hyper-parameters
of these two backbones are as follows:

• Swin-T: C = 96, layer numbers = {2, 2, 6, 2}

• Swin-S: C = 96, layer numbers ={2, 2, 18, 2},

Methods Image Size #parameters FLOPs throughput acc.

ViT-B/16 [3] 3842 86M 55.4G 85.9 77.9

DeiT-S [11] 2242 22M 4.6G 940.4 79.8
DeiT-B [11] 2242 86M 17.5G 292.3 81.8

Swin-T [7] 2242 29M 4.5G 755.2 81.3
Swin-S [7] 2242 50M 8.7G 436.9 83.0
Swin-B [7] 2242 88M 15.4G 278.1 83.5

Table 1. Comparison of different vision transformers pretrained on
ImageNet-1K, where acc. indicates the ImageNet top-1 accuracy

where C is the embedding dimension. We train Swin-based
TVT using mini-batch Stochastic Gradient Descent (SGD)
optimizer with the momentum of 0.9. We initialize the
learning rate as 0 and linearly increase it to lr = 0.003 after
500 training steps. We then decrease it by the cosine decay
strategy. The total training step is 5,000. For the Office-
Home and Office-31 datasets, we set α = β = γ = 0.1.
For the Visda-2017 dataset, we set α = 1.0, β = 0.1, and
γ = 1.0.

1.3. Results

As shown in Table 2 3, 4, our Swin-based TVT outper-
forms CNN-based counterparts by a large margin. Note that
the complexity of Swin-T and Swin-S are similar to ResNet-
50 (DeiT-S) and ResNet-101, respectively. Therefore, the
comparison is guaranteed to be fair in terms of the back-
bone complexity. Furthermore, Swin-based TVT achieves
very competitive performance compared with existing vi-
sion transformer-based methods, indicating the generaliza-
tion ability of TVT to various vision transformer backbones.

1.4. Attention Visualization

We visualize the attention map of the class token in TAM
to verify that our model can attend to local features that are
both transferable and discriminative. Without loss of gener-
ality, we randomly sample target-domain images in VisDA-
2017 dataset for comparison. As shown in Figure 1, our
method captures more accurate regions than Source Only
and Baseline. For instance, to recognize the person in
the top-left image, Source Only mainly focus on women’s
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0 68.4 96.7 99.3 68.9 62.5 60.7 76.1

TADA [13] 94.3 98.7 99.8 91.6 72.9 73.0 88.4
TAT [6] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
SHOT [5] 90.1 98.4 99.9 94.0 74.7 74.3 88.6
ALDA [1] 95.6 97.7 100.0 94.0 72.2 72.5 88.7

Source Only-S

D
ei

T 86.9 97.7 99.6 87.6 74.9 73.5 86.7
CDTrans-S [14] 93.5 98.2 99.6 94.6 78.4 78.0 90.4

Source Only-T

Sw
in 85.5 99.2 100.0 87.6 73.9 72.3 86.4

TVT-T 96.9 99.2 100.0 96.6 79.1 78.9 91.8

Table 2. Performance comparison on the Office-31 dataset
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Source Only
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0 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [8] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
ALDA [1] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
TADA [13] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SHOT [5] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Source Only-S

D
ei

T 55.6 73.0 79.4 70.6 72.9 76.3 67.5 51.0 81.0 74.5 53.2 82.7 69.8
CDTrans-S [14] 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5 74.7
WinTR-S [9] 65.3 84.1 85.0 76.8 84.5 84.4 73.4 60.0 85.7 77.2 63.1 86.8 77.2

Source Only-T

Sw
in 54.8 73.6 80.9 67.6 74.7 76.8 66.2 49.7 81.5 72.4 52.8 82.3 69.4

TVT-T 63.1 82.5 86.2 76.7 82.9 83.9 75.1 60.4 86.3 77.3 63.8 87.3 77.1

Table 3. Performance comparison on the Office-Home dataset

(A) Image (C) Baseline(B) Source Only (D) TVT

Figure 1. Attention map visualization of person, truck, and bicy-
cle in VisDA-2017 dataset. The hotter the color, the higher the
attention

shoulder which is discriminative yet not highly transferable.
Moving beyond the shoulder region, the baseline also at-
tends to faces and hands that can generalize well across do-
mains. Our method, instead, ignores the shoulder and only
highlight those regions that are important for classification
and transferable. Certainly, by leveraging the intrinsic at-
tention mechanism and fine-grained features captured by
sequential patches, our method promotes the capability of
ViT in transferring domain knowledge.
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