
A. The “What If” Challenges for Deep Neural
Networks (DNNs)

A causal inferable DNNs for reasoning chaotic real-world
patterns [56, 58, 92] would be necessary for many practice
scenarios. Recent regulatory concerns (e.g., GDPR [3]) on
Artificial Intelligence (AI) safety and self-driving automobile
accidents also highlight the importance and the emergence
of understanding: (1) "What" does a DNNs model "learn
for accurate label-prediction and (2) utilizing the "Why"
relationship between labels generated by human knowledge
and their conceptional pattern representations in the real
world.

We propose COCOCP dataset based on MS-COCO [38].
COCOCP dataset includes classes having similar ob-
ject(concept) but are different in context that could possibly
result in confusing interpretation and recognition by human
psychology studies (e.g., giraffe and elephant, etc.). In total,
three different common causal pairs are formatted, namely
giraffe-elephant (g-e) with 3316 images, stop sign-fire hy-
drant (s-f) with 2419 images, and bike-motorcycle (b-m)
with 4729 images. A pair of stop sign and fire hydrant has
been selected to study public awareness of on-road visual
detection.

A.1. Correlation and Causation in Vision Task

Correlation [56, 58, 59] is a statistical measure that de-
scribes the size and direction of a relationship between two
or more variables. A correlation between variables, however,
does not automatically mean that the change in one variable
is the cause of the difference in the values of the other vari-
able. Causation [58, 59] indicates that one event is the result
of the occurrence of the other event; i.e., there is a causal
relationship between the two events. This is also referred to
as cause and effect.

Theoretically, the difference between the two types of
relationships are easy to identify — an action or occurrence
can cause another (e.g., having rain droplet causes an in-
crease in the risk of developing rain day), or it can correlate
with another (e.g., a visual rain droplet is correlated with a
red umbrella, but it does not lead to having a representation
of a red umbrella in vision directly). In practice, however,
it remains difficult to establish cause and effect, compared
with establishing correlation clearly. Yet, most of the current
deep learning method focused on directly visualizing the
patterns after the visual model is trained without verifying
(e.g., intervention methods [59, 92]) the causation between
each representing patterns.

Neural Causation Coefficient (NCC) [43] is an existing
observational causal discovery validation method for the
joint distribution of a pair of related proxy variables. How-
ever, they mainly focus on discussing the object-context
causal hypothesis in the image setting, but barely covers
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Figure 6: Generative process of Treatment Learning Trans-
former model. Solid lines: decoding phase. Dashed lines:
probabilistic encoding phase. The treatment information
could be only observed during training.

the measurement of perturbation effect. NCC leverages
such embedded joint distribution as a regularization term
to encourage the learning of causal or anticausal patterns
in neural networks. Extended from Eq. 12, object-feature
ratio (OFR) [43] could be extended to a treatment-feature
ratio (TFR) score stl by do-operator [59] as:

stl =

∑m
j=1

∣∣∣(f c
jl|do(t))− (fjl|do(t))

∣∣∣∑m
j=1

∣∣(fjl)|do(t)∣∣ , (13)

where (l=512) is the input feature length, and ftj correspond-
ing vectors of feature scores is equivalent to FDNN(xt

j).

A.2. Basic Metrics for Causal Inference

By defining the CE of the individual treatment effect
(ITE) as the difference between two potential outcomes for
the individual [44, 76], the average treatment effect (ATE) is
defined as the expected value of the potential outcomes over
the subjects.

B. Dataset

B.1. Dataset Statistics: CPS General

In order to accurately measure visual causality, we se-
lect six categories from MS-COCO [38] and match them
into three causal pairs, which are giraffe-elephant, bicycle-
motorcycle, and stop sign-fire hydrant. Each pair is chosen
by its matching characteristic and background and split into
train and validation set by MS-COCO default setting. With
similar characteristics, we are able to study on the causal-
ity of how network classifies different categories. To avoid
network relying on texture to predict, every pair has a simi-
lar background, which makes our classifier more robust to
evaluate the causal effect. Next, we analyze the properties
of each pair and compare them. The number of images and
instances per category for both train and validation set are
shown in Fig.7 and Fig.8. In addition, the segmentation size
of each pair is shown in Table.6. The segmentation size
of each pair influence the performance of our classifier for



excessive noise from background increasing the difficulty to
find the correct hidden features as shown in Table.7.

Table 6: Percentage of Segmentation in Images

Pair 1 Giraffe Elephant
14.60% 24.13%

Pair 2 Bicycle Motorcycle
5.74% 15.59%

Pair 3 Stop Sign Fire Hydrant
7.58% 7.64%

B.2. Dataset Statistics: CPS Medical

In total, 2,633 three-dimensional images (with 658 test
images) were collected across multiple anatomies of interest,
multiple modalities, and multiple sources (or institutions)
representative of real-world clinical applications followed by
COCO-CP processing. All images were identified using pro-
cesses consistent with institutional review board polices at
each contributing site. We reformatted the images to reduce
the need for specialized software packages for reading to en-
courage use by specialists in medical imaging for high-level
feature reasoning.

Human Evaluation
Chest MRI can provide important features to diagnose lung
problems such as a tumor or pleural disorder, blood vessel
problems, or abnormal lymph nodes. We collaborate with
three board-certified thoracic surgeons to review the acti-
vate region generated by guided grad-CAM [75] on the test
images. The surgeons individually retrospectively reviewed
and labeled each study from the generated 100 image re-
sults as a DICOM file as consistent or inconsistent saliency
compared with their diagnosis using the PACS system. The
radiologists have averaged 6.43 years of experience on aver-
age, ranging from 5 to 16 years.

The TIT-generated saliency results also attain the highest
consistency (61.2%) from thoracic surgeons compared with
the results from VAERes (48.1%) and CEVAE∗

Res (58.8%).
The consistency from a randomly generated saliency map is
only (3.2%).

B.3. Ablation Study

Starting from a ResNet, we modified the architecture
towards proposed TIT and compare the accuracy perfor-
mance of various architecture. Table. 9 shows the impact of
each change of the architecture on COCOCP classification.
Among all variation, attention mechanism is the most impor-
tant feature, while having bilinear fusion (BF) is also more
effective than concatenation.

C. Parameter and Architecture
C.1. Adversarial Perturbation

With recent security concerns of adversarial example over
visual recognition, we also made a broad study on the ac-
curacy and causal effect under adversarial examples. Fast
Gradient Sign Method (FGSM) [19] is a classical gradient-
based adversarial noise to generate adversarial examples by
one step gradient update along the direction of the sign of
gradient at each pixel by:

XAdversarial = X + ε · sign (∇XJ(X,Y )) , (14)

where J is the training loss (e.g. cross entropy) and Y is
the groundtruth label for X . We adopt FGSM as an vi-
sual modification with ε = 0.3 ℓ∞ perturbation constraint.
This treatment could be further extended on other adversar-
ial examples combined with causal analysis [92]. Instead
of FGSM, we also study the accuracy performance under
Carlini-Wagner attack (C&W) [9] and projected gradient
descent (PGD) [47] as treatment. As shown in Table 8,
our proposed TIT attains higher accuracy and less accuracy
degradation in FGSM, C&W and PGD settings compared to
CVAE’ and CEVAE’ for CPS classification.

C.2. Overparameterization

For a fair comparison, we study the performance of archi-
tectures with similar number of parameters. To align with
the number of parameter in TIT, We modify the number of
Resblocks in CVAE’ as 4 and add attention mechanism to
CEVAE’. As shown in Table 10, with similar number of
parameters, our proposed TIT acquire the highest accuracy
and better utilize the power of more parameters to compete
with the state-of-art CVAE’ architecture.

C.3. Different Mask Size

We study the effect of different mask sizes with
same intervention flipping rate. The object-masking and
background-refilling are used as visual perturbation in the
experiments. To observe the effect, we gradually increased
the mask ratio among the target object. The results in Table
12 and Table 14 show the impact of changing the ratio to the
accuracy of CPS general and medical dataset classification.
We find the accuracy drops as the ratio increasing, while our
proposed TIT is relatively resilient to the high noise ratio
scenario and perform better classification.

C.4. NICO Dataset Settings

NICO dataset provides several settings to simulate the
Non-I.I.D dataset on different levels. 4 typical settings to
generate Non-I.I.D training and testing subset.
Minimum Bias
The setting choose the images in target class as positive sam-
ples and images in other classes as negative samples ignoring
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Figure 7: Image details per pairs in CPS: CPS1 – Giraffe-Elephant, CPS2 – Bicycle-Motorcycle, and CPS3 – Stop sign-Fire
hydrant.
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Figure 8: Instance details per pairs in CPS: CPS1 – Giraffe-Elephant, CPS2 – Bicycle-Motorcycle, and CPS3 – Stop sign-Fire
hydrant.

the context, which could lead to a minimum distribution shift
in training and testing subset.
Proportional Bias
The setting takes all context into consideration but the ratio
of each context are different in training and testing subset.
In this setting, the level of distribution shift can be adjusted
based on the difference of context ratio.
Compositional Bias
In this setting, the contexts exist in test subset are not guar-

anteed to exist in training subset. The distribution shift is
higher between training and testing set. The shift could be
enhanced by adding proportional bias.

We carefully observe the effect of different settings im-
posing on different model. The result in Table. 11 shows our
proposed TLT performs better in all settings compared to
other models including the CNBB model proposed by [23].



Table 7: CPS General: performance for common object [38] causal pairs with different visual treatments.

Treatment CVAE’ CEVAEatt TLT

Bicycle
&

Motorcycle

Object Masking 0.0 78.31 ±0.17 80.79 ±0.06 83.05 ±0.11
Object Masking 0.5 74.98 ±0.09 79.46 ±0.12 80.51 ±0.16
Object Masking 1.0 71.65 ±0.23 72.85 ±0.13 73.29 ±0.08
Background Refilling 0.5 75.28 ±0.15 77.5 ±0.27 78.68 ±0.20
Background Refilling 1.0 71.11 ±0.42 74.49 ±0.38 73.95 ±0.41

Stop Sign
&

Fire Hydrant

Object Masking 0.0 74.59 ±0.29 75.79 ±0.26 77.41 ±0.19
Object Masking 0.5 72.28 ±0.10 73.91±0.05 74.08 ±0.08
Object Masking 1.0 68.67 ±0.34 71.22 ±0.28 71.06 ±0.24
Background Refilling 0.5 69.13 ±0.16 73.79 ±0.21 75.45 ±0.14
Background Refilling 1.0 65.62 ±0.47 66.65 ±0.37 68.24 ±0.44

Elephant
&

Giraffe

Object Masking 0.0 93.72 ±0.25 93.53 ±0.28 94.67 ±0.20
Object Masking 0.5 90.14 ±0.11 93.01 ±0.19 93.15 ±0.09
Object Masking 1.0 80.12 ±0.19 82.73 ±0.21 83.06 ±0.11
Background Refilling 0.5 90.44 ±0.08 91.71 ±0.11 91.73 ±0.10
Background Refilling 1.0 81.32 ±0.28 82.59 ±0.29 83.91 ±0.17

Original CEVAE’CVAE’ CTR

Figure 9: We use class activation mapping methods [75, 96]
to explain our medical classification model. The yellow
bounding box is ground truth label from the Decathlon [78]
dataset. The guided-grad CAM method shows a highest
false-negative scores on the region of interest.

Figure 10: We show Guided-Grad-CAM results on dif-
ferent classification model. The results generated from
CAM is much matching yellow bounding box from the De-
cathlon [78] dataset in the test dataset.

D. Reproducibility
D.1. Hyper-Parameters and Experiment Setup

Causal Effect Autoencoder[44] (CEVAE∗
Res) baseline:

To empower CEVAE for the visual data, our input images
use dim(C)=3, dim(X)=128, dim(Y)=128. The encoder part

Table 8: Accuracy performance under adversarial attack as
the treatment. TIT attains higher accuracy in both FGSM,
C&W, and PGD settings.

Method CVAE’ CEVAE’ TLT
FGSM [19] 91.92±0.11 92.02±0.11 92.86±0.12
C&W [9] 82.32 ±2.34 74.23±4.18 88.12±1.26
PGD [47] 74.32 ±1.38 86.34±1.70 89.43±1.08

Table 9: Model architecture ablation study in COCOCP

Architecture Val. Acc. (%)
ResNet 81.23±0.12
ResNet + CVAE = CVAE’ 82.31±0.13
ResNet + CEVAE = CEVAE” 82.17±0.24
CEVAE + BF - bernoulli = CEVAE’ 82.68±0.15
Treatment Learning Transformer (TLT) 84.32±0.07

Table 10: Overparameterization ablation study in COCOCP

Model Para. Val. Acc. (%)
CVAE’ 4.03M 82.31±0.13

CVAE’ + 2 Resblocks 5.92M 82.38 ±0.18
CVAE’ + 4 Resblocks 7.83M 81.96 ±0.19
CEVAE’ + AttentionC 7.81M 83.62 ±0.21

TLT (ours) 7.39M 84.92±0.07

of VAE model utilized in paper takes the ResNet34 as fea-
ture extractor. Then we sample the q(t|x) by Bernoulli
distribution, and q(y|x, t) and q(z|x, y, t) are sampled by
densely connected hidden layer of 512 neurons. Sequen-
tially, the Z is generated by reparameterization from q|t.
The decoder starts from 3 ResBlocks with 512 width for the
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Figure 11: Error bar of average treatment effect

Table 11: Classification accuracy (%) on NICO dataset with
different model and setting. Setting 1,2 and 3 refers to min-
imum bis, proportional bias and compositional bias men-
tioned in C separately.

Setting CNBB [23] CVAE’ CEVAE’ TLT
Setting 1 42.96 ±1.54 48.72 ±2.01 53.94 ±1.74 57.02 ±1.42
Setting 2 44.15 ±1.48 50.10 ±1.98 54.33 ±1.64 58.75 ±1.44
Setting 3 45.16 ±1.52 50.23 ±2.12 56.17 ±1.82 60.98 ±1.52

dim(Z)=512 to reconstruct the p(x|z) , we further used 5
upsample blocks with 2 times scaling up and convolution
layers with [512,256,128,64,32] width. For the last convo-
lution layer, we use reflection padding with width set as 3.
Also, we sample the p(t|z) and p(y|t, z) by projecting t and
µy(t) through adaptive pooling and the densely connected
hidden layer with 512 width.

CEVAE with Attention baseline (CEVAEAtt): For a much
fair comparison with proposed Treatment Learning Trans-
former (TLT), we apply the dual attention module in the
encoder part of CEVAE to approximate the q(z|x, t, y). The
dual attention module consists of position and channel atten-
tion module.

• Global feature: After 1x1 convolution, the input is
scaled by 4 times larger with bilinear interpolation.

• Position attention: The module outputs the position
attention combined by 2 convolution layers with 64
width to calculate the attention.

• Channel attention: The module outputs the channel
attention by fusing the channel into spatial information
and pass the feature to 2 convolution layers with 64
width.

• Combination: The output has the channel of 512, the
same width as the input.

The weights of the network are initialized with weights from
a model pre-trained on ImageNet. The Adam algorithm with

standard parameters and learning rate 0.001 are utilized for
optimization. We use mini-batches of size 128 and pick
the models with the highest accuracy. All experiments of
our model are implemented in PyTorch using an NVIDIA
GeForce GTX 2080 Ti GPU with 12GB memory. The train-
ing time for each MS-COCO [38] causal pair with different
visual treatment takes one hour to two hours on average. The
reproducible code of CAN networks and a causal graphical
model have been provided in the supplementary and will be
open source2.

D.2. Cognitive Response to Attention Mechanism

Cognitive psychology and neuroimaging [12] studies
have found a distinct neural response to the different vi-
sual scene, as the visual attention mechanism [45]. Attention
exercises, Luck et al., [45] have been proved to be enhanced
learning capacities by executive control and transferring to
cognitive abilities. Since images from different categories
vary systematically in their visual properties as well as their
semantic category, variation in visual property may influ-
ence our cognitive process of visual stimuli. The human
brain has the ability to distinguish the visual scenes from
different categories when categorical perception is impaired.
For example, scrambling and masking are used widely when
experimenting with visual pattern sensitivity. Although these
perturbation preserved many of their visual characteristics,
perception of scene categories was severely impaired, which
makes scrambling and masking suitable metrics to compare
the visual perception process between neural network and
the human brain. These experiments [35, 45] have been val-
idate on adding attention training for a improved learning
performance in human education.

D.3. Using Saliency Map to Associate Learned
Causal Patterns

To better understand the learned causal patterns from
TLT, we use class activation mapping [96] (CAM) to study
[56, 58, 59, 92] the causal patterns. CAM removes all fully-
connected layers at the end, and including a tensor prod-
uct (followed by softmax), which takes as input the global-
average-pooled convolutional feature maps, and outputs the
probability for each class. To obtain the class-discriminative
localization map, Grad-CAM computes the gradient of yc
(score for class c) with respect to feature maps A and im-
portance weights αc

k of a convolutional layer. Similar to
CAM, Grad-CAM [75] heat-map is a weighted combination
of feature maps, and followed by a ReLU:

Lc
GradCAM = ReLU

(∑
k

αc
kA

k

)
(15)

2Please follow the readme in the supplementary open-source code for
more information



Table 12: Accuracy (%) of varying mask sizes when intervention flipping rate n = 0.05. IOM/IBR denotes Object-
Masking/Background-Refilling. The number X% means masking X% of a target object. Our proposed method (TLT)
maintains relatively high accuracy as X increases.

IOM CVAE’ CEVAEatt TLT IBR CVAE CEVAEatt TLT
10% 93.31 ±0.17 92.58 ±0.21 94.32±0.08 10% 93.04 ±0.16 94.25 ±0.18 94.65 ±0.09
30% 91.19 ±0.15 93.37 ±0.19 94.13±0.07 30% 91.27 ±0.21 93.53 ±0.23 94.25 ±0.11
50% 90.14 ±0.11 93.01 ±0.19 93.15 ±0.09 50% 90.44 ±0.08 91.71 ±0.11 91.73 ±0.10
70% 86.53 ±0.13 91.90 ±0.23 91.26 ±0.18 70% 86.62 ±0.21 88.85 ±0.18 90.46 ±0.12
100% 80.12 ±0.19 82.73 ±0.21 83.06 ±0.11 100% 81.32 ±0.28 82.59 ±0.29 83.91 ±0.17

In our DNN visualization experiment, we use the state-of-
the-are CAM method, guide-GradCAM [75] for compar-
ing CVAE’, CEVAE’, and our TLT. guided-GradCAM fuse
guided backpropagation and the Grad-CAM visualizations
via a point-wise multiplication.

Interestingly, according to the intervened image after
class-activation mapping techniques in Fig. 4 in the main
context and Fig. 12 in the supplementary, we could find out
when the area of interest are much central on the texture
and edge effect. To reduce the texture dependent variable,
we utilize a neural style transfer on the image set before the
intervention.

Original ResNet-34

Original

Masking

Figure 12: We conduct activation saliency experiment on the
COCO-CP trained by bike patterns under partial masking
intervention. The guided GradCAM results show current
DNNs methods often overfit on the texture and background
patterns instead of desired training label(s), which echoes to
previous studies [28, 63, 92].

E. Identification of Visual Causal Effect
E.1. Causality

Rubin’s Causal Model (Sekhon, 2008) is a framework
developed for the statistical analysis of cause of effect based

on the idea of potential outcomes. Consider:
• ti, a binary treatment t for individual i with 1 referring to
assigning the treatment and 0 to no treatment;
• yi is the outcome on individual i given a treatment value.
Each individual can have two potential outcomes or (coun-
terfactuals) available as {yi(1), yi(0)} t corresponding to
receiving the treatment or not.

Identifying conceptional treatment effect Individual
Treatment Effect (ITE) can be defined as the difference be-
tween the two potential outcomes for the individual; Average
Treatment Effect (ATE) as the expected value of the poten-
tial outcomes over the subjects. For a binary outcome, it is
defined as: given by:

yi = yi(0) (1− ti)+yi(1)ti; ATE = E [yi(1)]−E [yi(0)] ;
(16)

yi = yi(0) (1− ti) + yi(1)ti;

ATE = E [yi(1)]− E [yi(0)] ; (17)

The above mentioned metric cannot be properly estimated
if there are confounding variables in the system, which will
introduce bias (Greenland et al., 1999). The causal effect
by a treatment variable t on an outcome y is represented
by E[y|do(t = 1)], where do represents the fact that the
treatment has been kept at a specific value by external inter-
ventions on the system which do not affect other variables
and their causal relationships in the system. Pearl defines
the causal effect for a given treatment t and an outcome y
and other confounding variables Z as:

Given a proxy X, outcome y, binary treatment t and con-
founder Z, we use the back-door criteria to get:

P (y|X, do(t = 1)) =∫
Z

P (y|X, do(t = 1), Z)P (Z|X, do(t = 1))dZ (18)

Using the intervention manipulation rules, we obtain:

P (y|X, do(t = 1)) =

∫
Z

P (y|X, t = 1, Z)P (Z|X)dZ.

(19)



Table 13: Refuting tests of the causal estimate [59, 59] with causal effect (CE) over different treatment. The validation tests
show our method is confident since the common random selection (Tc) and Subset test (Ts) are closed to the original CE, and
all the CE results after replacing treatment with a random (placebo) variable (Tp) are close to zero.

Treatment Original ATE Test-Common (Tc) ↑ Test-Placebo (Tp) ↓ Test-Subset (Ts) ↑
IS: TLT 0.288 0.288 0.00479 0.288

CEVAEatt 0.2948 0.2941637 0.0427 0.276
CVAE’ 0.057 0.05673101 0.0385 0.0583

AT: TLT 0.036 0.035 0.012 0.035
CEVAEatt 0.027 0.0274 0.0062 0.024

CVAE’ 0.0247 0.0242 0.01347 0.0156
SB: TLT 0.2334 0.23385 0.0253 0.238

CEVAEatt 0.2417 0.2431 0.0364 0.2353
CVAE 0.1853368 0.1853 0.01157 0.1834

IM: TLT 0.1855 0.1854 0.037 0.191
CEVAEatt 0.22 0.22 0.0038 0.1736

CVAE’ 0.222 0.22285 0.0200707 0.1609
ST: TLT 0.31763 0.317641 0.0278 0.3351

CEVAEatt 0.3431 0.342221 0.0225 0.3252
CVAE’ 0.354412 0.354334 0.01127 0.3257

Table 14: Classification accuracy (%) with error bars (with 10-fold cross-validation) comparison between different visual
treatments under intervention in the CPS dataset.

Treatment CVAE’ CEVAEatt TLT
Object Masking 0.0 93.61 ±0.15 93.31±0.11 94.91±0.15
Object Masking 0.1 93.31 ±0.17 93.58±0.21 94.32 ±0.08
Object Masking 0.3 91.19 ±0.15 93.37±0.19 94.13 ±0.07
Object Masking 0.5 90.14 ±0.11 93.01 ±0.19 93.15 ±0.09
Object Masking 0.7 86.53 ±0.13 91.90±0.23 91.26±0.18
Object Masking 1.0 80.12 ±0.19 82.73 ±0.21 83.06 ±0.11
Background Refilling 0.1 93.04 ±0.16 94.25 ±0.18 94.65 ±0.09
Background Refilling 0.3 91.27 ±0.21 93.53 ±0.23 94.25 ±0.11
Background Refilling 0.5 90.44 ±0.08 91.71 ±0.11 91.75±0.10
Background Refilling 0.7 86.62 ±0.21 88.85 ±0.18 90.46 ±0.12
Background Refilling 1.0 81.32 ±0.28 82.59 ±0.29 83.91 ±0.17
Image Scrambling 59.42 ±2.19 77.3 ±1.17 78.8 ±0.62
Style Transfer 67.73 ±2.19 68.12 ±1.21 68.29 ±0.42
Adversarial Example 91.92 ±0.11 92.02 ±0.11 92.86 ±0.12

The refuting test for all conditional visual model show
sustainable performance to the original ATE by random com-
mon cause variable test (Tc) and random subset test (Ts) and
an ideally nearby zero ATE results on replacing treatment
(Tr) with a random variable test. Above validation show our
CGM and its associated neural are robust and validated for
causal modeling and measurement.

F. Evidence Lower Bound of VAE
To validate an Evidence Lower Bound (ELBO) of our

CAN, we assume p(X,Z), where X is the observed data and
Z is the latent representation. p(X,Z) can be decomposed

into the likelihood and the prior as: p(X,Z) = p(X|Z)p(Z).
Using Baye’s inference to calculate the posterior gives:

p(Z|X) =
p(X|Z)p(Z)∫
z
p(X|z)p(z)

(20)

VAE approximates it with the family of distributions
qλ(Z|X), where λ is the variational of parameters for the
given family. We minimize the KL divergence to ensure
that the approximate distribution used is close to the true



Table 15: Validation of causal effect by three causal refuting
tests. The causal effect estimate is tested by random common
cause variable test (Tc), replacing treatment with a random
(placebo) variable (Tr – lower is better), and removing a
random subset of data (Ts). TLT outperforms in most tests.

Noise : do(t) Measurement of ATE
Method Original w/ Tc w/ Tp w/ Ts

TLT 0.2432 0.2431 0.0114 0.2481
CEVAE’ 0.2414 0.2414 0.0248 0.2329
CVAE’ 0.1792 0.1763 0.0120 0.1751

posterior:

KL (qλ(Z|X)∥p(X|Z)) =Eq [log (qλ(Z|X))]

− Eq[log p(X,Z)] + log p(X).
(21)

The posterior for inference network will be :

q∗λ(Z|X) = argmin
λ

KL (qλ(Z|X)∥p(X|Z)) . (22)

However, due to the occurrence of p(X), the KL is still in-
tractable. We can manipulate the above equation by defining
the ELBO:

ELBO(λ) = log(p(X))−KL (qλ(Z|X)∥p(X|Z))

= Eq[log p(X|Z)]−KL (log qλ(Z|X)∥p(Z)) .
(23)

Then, the negative of the ELBO is the loss function used
for the neural networks:

l(θ, ϕ) =− Eqθ(z|x) [log pϕ(X|Z)]

+KL (log qθ(Z|X,λ)||p(Z)) .
(24)

θ and ϕ, are the weights and biases of the DNN which are
chosen to maximize the ELBO using gradient descent algo-
rithm.
Training Objective of Treatment Inference Transformer.
In the TLT setting, where the architecture is adapted from
TARnet [76]’s inference network, i.e., split input for each
treatment group in t after a shared representation, the objec-
tive function L is given by:

L =

N∑
i=1

Eq(zi|xi,ti,yi) [log p (xi, ti|zi) + log p (yi|ti, zi)]

+

N∑
i=1

Eq(zi|xi,ti,yi)[log p (zi)− log q (zi|xi, ti, yi)]

(25)

For predicting new subject predictions, the treatment assign-
ment t along with outcome y are required. We have intro-
duced Bernoulli distributions which help predict y and t (a

binary index of treatment) for new samples with the theoreti-
cal foundation from CEVAE [44]. We then leverage bilinear
fusion for q(z|x, y, t, a) instead of concatenation [44] and
remove Bernoulli sampling for classification label inference.
The attention decoding p(a|x, q(y)) = q(a) is incorporating
with the known treatment for training.

G. Future Work
Treatment Learning for Video Clip Classification.

The binary requirement [20, 71, 76] of treatment vari-
able aims to model a single independent causal condition
(e.g., either the noise is “the cause” or “not the cause” af-
fecting visual patterns) in our causal graphical model [56]
(CGM). Breaking down the binary hypothesis conflicts with
treatment effect estimation and the CGM. Interestingly, it is
possible to model treatment variables as a time-dependent
“noise ratio” for video classification (e.g., a Gaussian noise
over time frames).

As a proof of concept, we tested using TLT on a simple
UCF-101 dataset [80], where the naive results show TLT
remains a high accuracy of 99.6±0.2% against various mean
values, as shown in Table 16. In this preliminary study,
TLT also outperformed conditional transformer-based back-
bones [42], sharing a similar takeaway of our current focus,
which may connect to our cognitive discussion in the future.

Table 16: Classification accuracy (%) on UCF-101.

Model Video-Trans [42] CVAE’ TLT
Acc. 99.1 ±0.3 98.5 ±0.4 99.6 ±0.2

Discovering Visual Causality beyond Vision Classifi-
cation Tasks.
In conclusion, we find out causal effect do exist in differ-
ent DNN-based visual modification methods, and this effect
could be visualized to see its effectiveness on understand-
ing targeted DNN layer. By introducing a new extended
dataset, COCO-CPs, our CAN networks show competitive
visualization results and potential combined with existing
saliency-based methods. For future work, we plan to extend
our proposed CAN framework to discover visual causality
over more visual tasks, such a video detection, cross-model
adaption, and obvious question answering (VQA).


