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In this supplementary material, we provide additional
details, experimental settings, and results of our proposed
method. First, we describe the details of the proposed Fu-
sion Block and CSTA. Next, we report more results related
to the model size analysis in the main manuscript. Then,
we show the applicability of our approach to another im-
age restoration task (i.e., JPEG artifact removal). Finally,
we provide more visual results of feature visualization and
qualitative comparisons.

1. Fusion Block
Settings for the ablation in the main manuscript: We
elaborate on detailed settings of our fusion strategies in the
main manuscript. For the ablation experiment without inter-
mediate fusion (third column in Table 2 in the main paper),
we concatenate output features T4 and F4 from separated
branches and pass them to the tail module. For the experi-
ments with the unidirectional flow (fourth and fifth columns
in Table 2 in the main paper), we do not split feature Mi

into two. Instead, we reduce channel dimension from 2c to
c with a single convolution layer and transfer it to branch
chosen to receive fused representation (see Figure 1).

Experiment on lateral connection: Since the dimension
of the feature from the CNN branch and image-likely re-
arranged feature from the transformer branch are the same
(i.e., c × h × w), one can laterally connect two features
with element-wise summation rather than concatenation in
Equation 7 in the main manuscript. We compare the perfor-
mance of different lateral connection choices in Table 1 and
observe that concatenation gives slightly better results than
summation. Therefore, we finalize our lateral connection to
concatenating two features.

2. Cross-Scale Token Attention
Pseudocode of CSTA: Algorithm 1 provides pseudocode
of CSTA for better understanding. In particular, we split the

Method Lateral connection Set14/Urban100

ACT (Ours) element-wise summation 34.57/34.05
ACT (Ours) concatenation 34.60/34.07

Table 1: Comparison on different lateral connections of two
branches in our Fusion Block, reported in PSNR value.

hidden dimension of T into two and directly utilize Ta for
Ts while reformulating Tb to acquire Tl as elaborated in
the main manuscript. It is worth noting that such rearrange-
ment is similar to soft-split, which is introduced in T2T-
ViT [13] in that tokens are re-structured by overlapping.
Unlike soft-split, we rearrange only a part of the hidden
dimension within token T with a larger token size to per-
form cross-attention efficiently. Moreover, our rearrange-
ment aims to acquire numerous larger tokens (patches) to
exploit recurring patches across different scales within the
input image.

Settings for the ablation in the main manuscript: We
elaborate details about Impact of more token scales exper-
iment in our ablation on CSTA in the main manuscript.
Specifically, we demonstrate how we perform cross-
attention by introducing three different token scales (3rd
row in Table 3c in the main paper). To enable our network to
leverage patch-recurrence across various scales while main-
taining similar computational cost, we first split input to-
ken T ∈ Rn×d into four tokens {Ti}4i=1 ∈ Rn×d/4 before
cross-attention. Then, we rearrange T2 and T4 with token
size of 6×6 and 12×12, respectively, with the same strides
of 3, while T1 and T3 keep their token size of 3×3. We per-
form two independent cross-attention using (T1, T2) and
(T3, T4) pair as elaborated in the main manuscript. Con-
sequently, the network can utilize multi-scale information
across various scales. Lastly, we re-concatenate four tokens
into one after rearranging token T2 and T4 to include a to-
ken size of 3× 3.



(a) Fusion Block (unidirectional, CNN to transformer branch)

(b) Fusion Block (unidirectional, Transformer to CNN branch)
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Figure 1: Illustration of unidirectional Fusion Blocks, used for the main manuscript’s ablation experiments.

IPT [1] SwinIR [4] ACT (Ours)

0.586s 0.528s 0.566s

Table 2: Runtime comparison.

3. Model Size Analysis
For model size analysis in Table 5 in the main

manuscript, we count FLOPs for 48 × 48 image following
IPT [1] using the open source. 1 Moreover, we compare the
runtime of our model with recently proposed transformer-
based SR methods [1, 4]. We average five runs on the same
setting as in Table 5 in the main paper with Ryzen 2950X
CPU and NVIDIA 2080 Ti. The result in Table 2 shows that
ours is competitive in runtime.

4. Applicability to other Image Restoration
Tasks

We investigate the applicability of our network to a chal-
lenging restoration task; color JPEG artifact removal. To
do so, we only modify the tail part of the network to in-
clude a single convolutional layer while discarding Pix-
elShuffle upsampler [11]. We train our network with the
same training configurations for SR, and the training patch
size is 48 × 48. We compare our ACT with the state-

1https://github.com/facebookresearch/fvcore

of-the-art color JPEG artifact removal methods, including
QGAC [2] and FBCNN-C [3] for quality factors of 10,
20, 30, and 40. We evaluate performance on LIVE1 [10],
BSDS500 [6], and ICB [9] datasets with three different met-
rics including PSNR, SSIM, and PSNR-B values follow-
ing the baselines [2, 3]. We report the quantitative compar-
ison in Table 3. As shown in the table, our ACT shows
promising results despite lacking task-specific architectural
design. Moreover, we visually compare our method against
the baselines in Figure 2. Compared to the baselines, our
ACT accurately restores corrupted images, including natu-
ral scenes, sharp textures, and characters. This result im-
plies the possibility of applying our ACT to various restora-
tion tasks similar to the recent image restoration transform-
ers [1, 4, 12].

5. Feature Visualization
In Figure 3, we provide more feature visualizations to

understand the role of two branches.

6. Additional Qualitative Results
To further demonstrate the superiority of our proposed

method, we provide more visual comparisons with six state-
of-the-art SR methods: EDSR [5], RCAN [14], HAN [8],
NLSA [7], IPT [1], and SwinIR [4]. The visual comparisons
are shown in Figure 4 and Figure 5.



Dataset QF JPEG QGAC [2] FBCNN-C [3] ACT (Ours)

LIVE1 [10]

10 25.69/0.743/24.20 27.62/0.804/27.43 27.77/0.803/27.51 27.94/0.808/27.63
20 28.06/0.826/26.49 29.88/0.868/29.56 30.11/0.868/29.70 30.39/0.874/29.96
30 29.37/0.861/27.84 31.17/0.896/30.77 31.43/0.897/30.92 31.77/0.902/31.26
40 30.28/0.882/28.84 32.05/0.912/31.61 32.34/0.913/31.80 32.70/0.917/32.16

BSDS500 [6]

10 25.84/0.741/24.13 27.74/0.802/27.47 27.85/0.799/27.52 27.84/0.800/27.46
20 28.21/0.827/26.37 30.01/0.869/29.53 30.14/0.867/29.56 30.20/0.868/29.58
30 29.57/0.865/27.72 31.33/0.898/30.70 31.45/0.897/30.72 31.51/0.897/30.77
40 30.52/0.887/28.69 32.25/0.915/31.50 32.36/0.913/31.52 32.41/0.914/31.56

ICB [9]

10 29.44/0.757/28.53 32.06/0.816/32.04 32.18/0.815/32.15 32.20/0.816/32.17
20 32.01/0.806/31.11 34.13/0.843/34.10 34.38/0.844/34.34 34.50/0.844/34.46
30 33.20/0.831/32.35 35.07/0.857/35.02 35.41/0.857/35.35 35.61/0.859/35.55
40 33.95/0.840/33.14 32.25/0.915/31.50 36.02/0.866/35.95 36.21/0.868/36.13

Table 3: PSNR/SSIM/PSNRB comparison of different state-of-the-art methods on color JPEG artifact removal. Our ACT
shows competitive performance over baselines. Performances for the baselines are borrowed from [3]. The best and the
second-best values are highlighted with bold and underline, respectively.
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Figure 2: Visual comparison of our ACT against state-of-the-art color JPEG artifact removal methods [2, 3] with quality
factor of 10. Our ACT better removes the artifacts and produces accurate structures than the baselines.
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Algorithm 1: Pseudocode of CSTA in a PyTorch-like style.
# b, n, d: batch size, number of tokens, and hidden dimension of T
# n′, d′: number of tokens and hidden dimension of Tl directly after acquiring
large tokens from Tb by rearrangement
# h, w: height and width of patches

import torch
import torch.nn.functional as F

def CSTA(T):
# split T (b× n× d) into Ta and Tb

T a, T b = torch.split(T, d//2, dim=2)
# acquire Ts from Ta

T s = T a
# acquire Tl from Tb by rearrangement
T l = F.fold(T b, output size=(h, w), kernel size=token size,
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# project tokens into query, key, and value
T l = mlp blk before attn(T l) # reduce dimension from d′ to d/2
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q s, k s, v s = project(T s)
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T l = attention(query=q l, key=k s, value=v s)
T s = attention(query=q s, key=k l, value=v l)

# increase hidden dimension of Tl from d/2 to d′

T l = mlp blk after attn(T l)

# rearrange Tl from (b× n′ × d′) to (b× n× (d/2))
T l = F.fold(T l, output size=(h, w), kernel size=token size*2,
stride=token size)
T l = F.unfold(T l, kernel size=token size, stride=token size)

# concatenate Ts and Tl into T (b× n× d)
T = torch.cat((T s, T l), dim=2)

return T
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Figure 3: Feature map visualizations of transformer branch and CNN branch. Brighter color indicates higher value.
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Figure 4: Visual comparison of the proposed method against various state-of-the-art methods for ×4 SR.
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Figure 5: Visual comparison of the proposed method against various state-of-the-art methods for ×4 SR.


