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Figure 1. Illustration of the similarity-aware feature enhancement block under the 3-shot case.

1. Network Architecture and Training Configu-
rations

This part describes the detailed architecture of our
SAFECount block and other assistant modules, followed
by the training configurations. To make the supplementary
material self-contained, we recall the proposed similarity-
aware feature enhancement block in Fig. 1.

Feature Extractor. We select ResNet-18 [6] pre-trained
on ImageNet [4] as the feature extractor.1 Given a query
image, Q ∈ R3×512×512, we resize the outputs of the first
three residual stages of ResNet-18 to the same size, 128×
128, and concatenate them along the channel dimension.
Afterward, a 1× 1 convolutional layer is applied to reduce
the channel dimension to 256, resulting in the query feature,
fQ ∈ R256×128×128. The size of ROI pooling [17] is set as
3×3, so the support feature, fS , has the shape of K×256×
3 × 3 in the K-shot case. The backbone is frozen during
training, while the 1× 1 convolutional layer is not.

1We borrow the checkpoint here.

Similarity Comparison Module (SCM). Our SCM is
implemented with three steps: learnable feature projection,
feature comparison, and score normalization. The feature
comparison is implemented by convoluting the query feature,
fQ, with the support feature, fS , as kernels, deriving a
score map, R0. This process is illustrated intuitively in
Fig. 2a. Other components in SCM have been detailed
in the paper. The SCM finally outputs a similarity map,
R ∈ RK×1×128×128.

Feature Enhancement Module (FEM). The FEM is
composed of two steps: weighted feature aggregation and
learnable feature fusion. The weighted feature aggregation
treats the values in the similarity map, R, as weight-
ing coefficients to integrate fS , producing the similarity-
weighted feature, fR. This process is realized by the
convolution, as shown in Fig. 2b. Besides, before serving
as the convolutional kernels, fS is flipped both horizontally
and vertically. As illustrated in Fig. 3, the flipping helps
fR inherit the spatial structure from fS . In Fig. 3, R is
a unit impulse function, meaning that only one position

https://download.pytorch.org/models/resnet18-5c106cde.pth
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Figure 2. (a) Illustration of the feature comparison in SCM under the 1-shot case, where the feature projection is omitted. (b) Illustration
of the weighted feature aggregation in FEM under the 1-shot case.
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Figure 3. Illustration of kernel flipping in FEM, which helps
fR inherit the spatial structure from fS . The convolution is
implemented with the same padding strategy.

has the maximum similarity with fS , while other positions
have no similarity with fS at all. Therefore, fR should
have a sub-part exactly the same with fS in the position
corresponding to the maximum similarity, while the others
should be zero vectors. The weighted feature aggregation
constructs fR following the above insights via flipping and
convolution. The learnable feature fusion is completed by
a 2-layer convolutional network, skip connection, and layer
normalization. The architecture of the convolutional network
is shown in Tab. 1a. Other components in FEM have been
detailed in the paper. Eventually, the FEM produces the
enhanced feature, f ′

Q ∈ R256×128×128.
Regress Head. The regress head regresses the density
map, D ∈ R512×512, from the enhanced feature, f ′

Q. The
regression head is composed of a sequence of convolutional
layers, followed by the Leaky ReLU activation and bi-linear
upsampling, as shown in Tab. 1b.
Multi-block Architecture. The enhanced feature derived by
one block, f ′

Q, could serve as the input to the next block by
taking the place of the query feature, fQ, forming a multi-

Table 1. Network architectures of (a) the learnable feature fusion
in FEM, where the skip connection and the layer normalization are
omitted, and (b) the regress head.

(a) Architecture of the learnable feature fusion

layer kernel in out activation

Conv 3 × 3 256 1024 Leaky ReLU

Conv 3 × 3 1024 256 -

(b) Architecture of the regress head

layer kernel in out activation followed by

Conv 5 × 5 256 128 Leaky ReLU 2×Upsample

Conv 3 × 3 128 64 Leaky ReLU 2×Upsample

Conv 1 × 1 64 32 Leaky ReLU -

Conv 1 × 1 32 1 ReLU -

block architecture. As for another input of the next block,
the support feature, fS , there are two choices. If the support
image is cropped from the query image, fS is updated by
ROI pooling on newly obtained f ′

Q. If not, fS does not
change in different blocks.
Training Configuration on FSC-147 [15]. The sizes of the
query image, the query feature, and the support feature are
selected as 512 × 512, 128 × 128, and 3 × 3, respectively.
The SAFECount block number is set as 4. The model is
trained with Adam optimizer [9] for 200 epochs with batch
size 8. The hyper-parameter ϵ in Adam optimizer is set as
4e-11, much smaller than the default 1e-8, considering the
small norm of the losses and the gradients. The learning
rate is set as 2e-5 initially, and it is dropped by 0.25 after
every 80 epochs. Data augmentation methods including
random horizontal flipping, color jittering, and random
gamma transformation are adopted.

2. Ablation Studies
This part conducts comprehensive ablation studies on the

components of our approach.



Table 2. Ablation studies regarding (a) loss weight term α in
Eq. (1), (b) size of ROI pooling.

(a) α in Eq. (1)

α
Val Set Test Set

MAE RMSE MAE RMSE

1e-3 15.15 52.02 15.42 95.77
1e-4 14.18 53.65 13.55 89.69
1e-5 15.11 56.05 14.63 93.41

0 15.28 47.20 14.32 85.54

(b) Size of ROI Pooling

Size of ROI Pooling Val Set Test Set

MAE RMSE MAE RMSE

1 × 1 15.83 54.65 16.13 95.52
3 × 3 15.28 47.20 14.32 85.54
5 × 5 15.57 53.79 15.18 89.32

Loss Function. The loss function described in the paper is
MSE loss. Actually, we also implement experiments with
another SSIM term as follows,

L = MSE(D,DGT )− αSSIM(D,DGT ), (1)

where SSIM(·) is the structural similarity function [21],
which measures the local pattern consistence between the
predicted density map and the ground-truth, α is the weight
term. The results with different α are shown in Tab. 2a.
Adding the SSIM term promotes the performance of MAE
but with the sacrifice of RMSE. Compared with MAE,
RMSE relies more heavily on the prediction of the samples
with extremely large count. Therefore, we speculate that the
SSIM term is beneficial to some samples, but may harm the
samples with extremely large count. We finally decide not to
add the SSIM term, because the performance drop of RMSE
is too large.

Size of ROI Pooling. To study the influence of the ROI
pooling size, we conduct experiments with different ROI
pooling sizes. The results are shown in Tab. 2b. The
performance is the worst with the ROI pooling size as 1× 1,
i.e. pooling to a support vector, since pooling to a support
vector fully omits the spatial information of the support
image. Adding the ROI pooling size to 3× 3 brings stable
improvement. However, further increasing the ROI pooling
size to 5× 5 decreases the performance slightly. This may
be because too large ROI pooling size would slightly hinder
the accurate localization of target objects. Accordingly, we
select the ROI pooling size as 3× 3 for FSC-147.

3. More Results

This part presents more experimental results, including
the quantitative evaluation on various class-specific counting
datasets [2, 3, 7, 24], as well as some visual samples.

3.1. Class-specific Object Counting

Our method is designed to be a general class-agnostic
FSC approach. Nonetheless, we still evaluate our method on
class-specific counting tasks to further testify its superiority.

Class-specific Counting Datasets. We select five class-
specific counting datasets including two car counting
datasets: CARPK [7] and PUCPR+ [7] and three crowd
counting datasets: ShanghaiTech (PartA and PartB) [24],
UCSD [2], and Mall [3]. The details of these datasets are
given in Tab. 3.

Table 3. Class-specific counting datasets.

Type Dataset #Images #Objects

Car CARPK [7] 1448 89,777
PUCPR+ [7] 125 16,916

Crowd

PartA [24] 482 241,677
PartB [24] 716 88,488
UCSD [2] 2000 49,885
Mall [3] 2000 62,325

Training Configuration on Class-specific Counting. The
size of the support feature is set as 1× 1. The block number
is set as 2. Data augmentation methods including random
flip, color jitter, random rotation, and random grayscale are
used to prevent over-fitting and improve the generalization
ability. Other setups are the same as FSC-147.

Car Counting. Car counting tasks are conducted on
CARPK [7] and PUCPR+ [7]. 5 support images are
randomly sampled from the training set and fixed for both
training and test. Our method is compared with 4 categories
of baselines: object detectors, single-class car counting
methods, multi-class counting methods, and FSC methods.
Note that multi-class counting methods could only count
classes in training set, while FSC methods can count unseen
classes. The quantitative results are shown in Tab. 4a. Our
approach surpasses all multi-class counting methods and
FSC methods with a large margin, and achieves comparable
performance with single-class car counting methods.

Crowd Counting. Crowd counting tasks are implemented
on UCSD [2], Mall [3], and ShanghaiTech [24]. We
randomly sample 5 support images from the training set and
fixed them for both training and test. 3 kinds of competitors
are included: single-class crowd counting methods, multi-
class counting methods, and FSC methods. The results
of MAE are reported in Tab. 4b. For UCSD and Mall
where the crowd is relatively sparse, our approach surpasses
all counterpart methods stably. For ShanghaiTech, our
approach outperforms all multi-class counting methods and
FSC methods with a large margin, and achieves competitive
performance on par with specific crowd counting methods. It
is emphasized that, our method is not tailored to the specific
crowd counting task, while the compared methods are.



Table 4. Counting performance on class-specific datasets,
including CARPK [7], PUCPR+ [7], UCSD [2], Mall [3], and
ShanghaiTech (Part A & Part B) [24].

(a) Car Counting

Method CARPK PUCPR+

MAE RMSE MAE RMSE

1

YOLO [16] 48.89 57.55 156.00 200.42
F-RCNN [17] 47.45 57.39 111.40 149.35
S-RPN [7] 24.32 37.62 39.88 47.67
RetinaNet [12] 16.62 22.30 24.58 33.12

2 LPN [7] 23.80 36.79 22.76 34.46
HLCNN [8] 2.12 3.02 2.52 3.40

4
One Look [14] 59.46 66.84 21.88 36.73
IEP Count [19] 51.83 - 15.17 -
PDEM [5] 6.77 8.52 7.16 12.00

5
GMN [13] 7.48 9.90 - -
FamNet [15] 18.19 33.66 14.68† 19.38†

Ours 5.33 7.04 2.42 3.55

(b) Crowd Counting (MAE)

Method UCSD Mall PartA PartB

3

Crowd CNN [23] 1.60 - 181.8 32.0
MCNN [24] 1.07 - 110.2 26.4
Switch-CNN [1] 1.62 90.4 21.6
CP-CNN [18] - - 73.6 20.1
CRSNet [11] 1.16 - 68.2 10.6
RPNet [22] - - 61.2 8.1
GLF [20] - - 61.3 7.3

4 LC-FCN8 [10] 1.51 2.42 - 13.14
LC-PSPNet [10] 1.01 2.00 - 21.61

5
GMN [13] - - 95.8 -
FamNet [15] 2.70† 2.64† 159.11† 24.90†

Ours 0.98 1.69 73.70 9.98
1 Detectors provided by the benchmark [7].
2 Single-class car counting methods.
3 Single-class crowd counting methods.
4 Multi-class counting methods (classes for training and test must be the same).
5 Few-shot counting methods.
† trained and evaluated by ourselves with the official code.

3.2. More Qualitative Results

Qualitative Results on FSC-147 [15]. The qualitative
results of FSC-147 are shown in Fig. 4, Fig. 5, and Fig. 6a.
For each class, the images from top to down are the
query image and the predicted density map. The objects
circled by the red rectangles are the support images. The
texts below the density map describe the counting results.
Our SAFECount could successfully count objects of all
categories with various densities and scales, demonstrating
strong generalization ability and robustness. Specifically,
for both objects with extremely high density (e.g., Legos in
Fig. 5) and objects with quite sparse density (e.g., Prawn
Crackers in Fig. 5), both small objects (e.g., Birds in Fig.
4) and large objects (e.g., Horses in Fig. 4), both round
objects (e.g., Apples in Fig. 4) and square objects (e.g.,
Stamps in Fig. 5), both vertical strip objects (e.g., Skis in
Fig. 5) and horizontal strip objects (e.g., Shirts in Fig. 5),
our approach could precisely count objects of interest with

high localization accuracy.
Qualitative Results on Class-specific Object Counting.
Our method is evaluated on two car counting datasets and
three crowd counting datasets. For each dataset, five support
images are randomly sampled from the training set and
fixed for both training and test, as shown in Fig. 6b. The
qualitative results on CARPK [7], PUCPR+ [7], UCSD [2],
Mall [3], and ShanghaiTech [24] are shown in Fig. 6c-h. (1)
Car Counting: Our approach could localize and count cars
with different angles and scales successfully. Especially, in
the cases that some cars are in the deep shadows (e.g., the
7th, 11th examples in Fig. 6c, the 11st example in Fig. 6d) or
partly hidden under the trees (e.g., the 3rd, 10th examples in
Fig. 6c, the 5th, 12nd examples in Fig. 6d), our method still
accurately localizes these cars, indicating the superiority
of our approach. (2) Crowd Counting: In the cases of
UCSD and Mall where the crowd density is relatively sparse,
our approach could count the number of persons precisely
with extremely small error. For ShanghaiTech PartA, if the
persons in the crowd are distinguishable (e.g., the 1st, 11th

examples in Fig. 6g), our model could localize each person
precisely. If the persons are too crowded to distinguish (e.g.,
the 2nd, 5th examples in Fig. 6g), our method could predict
an accurate density estimate for crowds. For ShanghaiTech
PartB where most persons are distinguishable, our approach
successfully localizes and counts persons, indicating that our
approach is capable of crowd counting with various crowd
densities.
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Figure 4. Qualitative results on unseen classes in FSC-147 (from Ants to Keyboard Keys). There are only 2 images of Flowers in FSC-147.
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Figure 5. Qualitative results on unseen classes in FSC-147 (from Kiwis to Tree Logs). There are only 2 images of Prawn Crackers in
FSC-147.
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Figure 6. (a) Qualitative results on unseen classes (Watches) in FSC-147. (b) Support images of class-specific datasets. (c-h) Qualitative
results on class-specific datasets.
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