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A. Plots for evaluations during training
Here we show the detailed version of the summary (mean) plots presented in Figure 2 in the main text. They show the

same curves for 4 distinct classes of CIFAR10, and also under 3 different metrics. They appear in Figure 1 (SimCLR AUC
and Linear probes during training), Figure 2 (SimCLR Kappa and MMD during training), Figure 3 (SimSiam AUC during
training), Figure 4 (SimSiam Kappa and MMD during training), and Figure 5 (SimCLR with norm AUC). The same findings
as in the main text are seen to hold across these detailed variants.

B. Dataset details
The main datasets we test on are: CIFAR 10, CIFAR 100 and ImageNet30, fashion-MNIST following the splits and

protocols specified in [32] and [31]; we add SVHN using the same basic protocol of one class as inlier v.s. the remaining as
outliers.We resized images to 32 x 32 for all datasets apart from ImageNet30 which uses the standard ImageNet ResNet-18
architecture’s transformation of a 224-pixel center-cropped region from the 256 x 256 input image.

C. Comparison of scoring with different feature evaluations, metrics & ensembling
As discussed in Section 2.5, we compare the default scoring used in our main experiments (the encoder’s last layer features

using Sk-Cos) with a feature ensembling evaluation scheme consisting of these scores summed across feature maps from the
encoder backbone network, and projection heads from either SimSiam or SimCLR. In the following tables we use following
feature maps:

• conv block n: The output feature map from blockn of the convolutional backbone. Which is first directly flattened
from 2D to 1D before evaluation.

• conv block n (1x1): Same as conv block n but after pooling to a size of 1x1.

• head layer n: The output feature map from layer n of the projection head.

• All Conv blocks: The sum of the scores of all convolutional blocks, using the distance specified in column, then
summed across table columns merged in table.

• All blocks: The sum of the scores of all network internal feature maps, using the distance specified in column, then
summed across table columns merged in table.

• Ens.: The sum of k-Cos and k-Cos (Mah) for 2D feature maps (e.g. convolutional feature maps) and c-Cos and c-Cos
(Mah) for 1D feature maps (e.g. projection heads).

We also investigate 5 different metric functions for computing the OOD score, namely:

• k-Cos: Cosine distance to closest (k=1) training vector, introduced in Section 2.5
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(a) (b) (c)

(d) (e)

Figure 1: Training SimCLR on classes 0,1,2,3 from CIFAR10 and evaluating the representation during training. (a) Using
Gaussian density estimation (GDE) [25]. (b) k-Cos cosine distance to the closest (k=1) point in ID data. (c) c-Cos cosine
distance to the mean direction in ID data. Both these are defined in more detail in Section 2.5. (d) Linear evaluation [35]
of learned embedding. (d) Weighted nearest neighbor classifier (k-NN) [33]. Solid lines represent k = 1 and dashed lines
represent k = 20

• k-Cos (Mah): Same but evaluated in Mahalanobis space.

• c-Cos: Cosine distance to the mean of all the training set vectors, introduced in Section 2.5

• c-Cos (Mah): Same but evaluated in Mahalanobis space.

• GDE: A Gaussian Kernel density estimator, we use the same configuration as in [31].

Tables 2,3,4 show an extensive evaluation of presented models at most internal layers and a variety of scoring metrics. We
should highlight the fact that each number presented in those tables is the average across all classes in the dataset, with one
experiment per class i.e. 10 experiments for CIFAR10, and 20 experiments for CIFAR100. We can notice:

• The Cosine Mahalanobis distance mostly outperforms most other evaluation metrics, sometimes a by large gap.

• There is a consistent improvement associated with ensembling of feature scores. This is true across models and across
datasets.

• We note this type of feature ensembling can be considered free, computation-wise, compared with the ensembling used
in e.g. CSI, that slows down the method significantly at inference.
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(a) (b)

Figure 2: Training SimCLR on classes 0,1,2,3 from CIFAR10 and monitoring the learned vMF ID and OOD representations
during training. (a) κ progress during training; solid lines are ID data and dashed are OOD data. (b) The MMD [11] between
the learned representation and samples from uniform distribution on a unit hypersphere (lower is more uniform).

Figure 3: Same experiment as Figure 1 but with SimSiam.

D. CIFAR 10 per-class results
Here in Table 5 we show the per class results for each of the CIFAR 10 classes trained for one-class classification against

the others, and compare our NSA method (SimSIAM with Norm, no ensembling augmentations), with (i) last layer features
only and (ii) summing all features, with other recent works that also report these results.

E. Additional pollution results
Table 6 shows additional CIFAR10 results in the presence of pollution, also more comparisons.

F. Additional comparison with previous results from literature
Table 1 gives a more detailed overview of related OOD / One Class Classification results from the literature, and compari-

son with variants of our baseline (ensemble free) variants of SimSiam, SimCLR, along with our implementation of pretrained
ResNets (as an additional basline for comparison to other pretrained methods.

The pretrained results also serve to indicate where these types of approaches can fall down, and the issues in a with
fairly comparing these pretrained methods with from-scratch trained approaches in the Anomaly/OOD detection context (It
is unsurprising that pretraining a representation on ImageNet does well at distinguishing “unseen” ImageNet30 classes in a
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Figure 4: Same experiment as Figure 2 but with SimSiam.

Figure 5: Same experiment as Figure 1 but after adding the normalization proposed in Section 2.3.

Figure 6: Same experiment as Figure 2 but after adding the normalization proposed in Section 2.3.

One-Class classifier scenario, and similarly for e.g. CIFAR, where the same types of class are present; however SVHN is less
similar and therefore the pretrained represenation is less useful).

More details and notes on these competing methods follow. In particular, we clarify that “(n)” indicates a method using
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CIFAR10 CIFAR100 IN30 fMNIST SVHN

O
ur

s

1. SS(n) = SimSiam with norm, aka “NSA” 91.54 84.09 80.88 95.15 94.91
2. SC(n) = SimCLR(w norm, no neg aug) 89.27 83.95 75.17 94.61 93.84
3. SC) = SimCLR(w/o norm, no neg aug) 86.49 80.51 75.17 94.61 93.84
4. SS(-) = SimCLR(w/o norm, neg aug) 91.12 86.68 76.97 95.47 92.17

Pr
et

ra
in

in
g

/F
T

5. Pretrained ResNet18* [Ours] 93.63 92.64 99.78 94.35 61.06
6. Pretrained ResNet50* [Ours] 94.45 94.68 99.91 95.16 66.28

7. Pretrained ResNet152* [Ours] 95.82 95.21 99.96 94.99 63.41
8. PT ResNet50 (DROC [31])* 80.0 83.7 - 91.8 -

10. ResNet152 (DN2 [24])* 92.5 94.1 - 94.5 -
11. ResNet152 (PANDA [24])* 96.2 94.1 - 95.6 -

12. Self-Sup. PT R50. Xiao et al.[34]* 93.8 92.6 - 94.4 -

D
is

t.
Sh

if
tin

g 13. CSI (SimCLR loss only)** 87.9 - - - -
13. CSI (SimCLR w neg aug only)** 90.1 86.5 83.1 - -

14. CSI (Full)** 94.3 89.6† 91.6 - -
15. DROC, Contrastive 89.0 82.4 - 93.9 -

16. DROC, Contrastive DA 92.5 86.5 - 94.8 -

O
th

er
M

et
ho

ds

19. DeepSVDD [27] 64.8 67.0 - 84.8 -
20. DROCC [9] 74.2 - - - -

21. Geom (Golan et al.) [8]** 86.0 78.7 - 93.5
22. GOAD (Bergman) [1]** 88.2 74.5 - 94.1 -
23. ARNet (Huang) [17]** 86.6 78.8 - 93.33
24. Hendryks et al. [16]** 90.1 79.8 85.7 93.2 -

25.SSD [30] 90.0 - - - -

Table 1: One-Class Classification Summary results reported in the literature on various datasets, plus some of our results; all
figures are AUC. * indicates methods trained on external additional data, which may overlap in scope with the “unseen” OOD
data. ** indicates method using test-time data augmentation / ensembling during evaluation, which can involve drastically
slower inference.

our proposed modifications, and “w/o norm” is the standard version of the architecture (SimCLR or SimSiam) without these
modifications. “‘(-)” means including strong distributionally negative shifted augmentations, using randomly the four 0, 90,
180, and 270 degree rotations, following the approach of CSI [32].

We note in particular that CSI’s method combines many parts (contrastive+classification losses and scoring functions,
plus ensembling) which each contribute something and add up to give good results. Our goal of instead showing baseline
SimCLR results with / without the norm, and with/without shifted augmentations is to create a more straightforward baseline
to compare with. We note improved results are possible with our method adding these additional features such as ensembling,
but also at additional computational cost, as is the case with CSI.

On the other hand, our pretrained baselines obtain very good results equal or exceeding PANDA [24]’s fine-tuned results
on datasets that are similar in nature to ImageNet that they are pretrained on; this exemplifies the benefits of our chosen
scoring metric SNSA = Sk-Cos on good representations in general. However we also show datasets where this approach falls
down, compared with self-supervised methods.

For each of the methods, here is a more detailed description of the features, networks, scoring functions etc. used for
comparison:

1. NSA [ours]; features = SimSiam (with norm), ResNet18; scoring = KNN + Mahalanobis Cosine, last layer features.

2. features = SimCLR(w norm) + NO negative shifting augmentations, ResNet18 ; scoring = KNN + Mahalanobis Cosine,
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k-Cos k-Cos (Mah) c-Cos c-Cos (Mah) GDE
conv block 2 80.29 83.58 65.35 83.52
conv block 3 85.87 83.59 75.81 83.53
conv block 4 92.21 91.20 88.35 91.12

conv block 1 (1x1) 71.29 70.85 68.39 67.37 67.39
conv block 2 (1x1) 73.19 71.93 70.94 69.66 69.39
conv block 3 (1x1) 81.46 83.47 73.60 79.66 79.32
conv block 4 (1x1) 91.85 91.54 84.88 90.52 91.04

head layer 1 82.64 87.84 71.18 87.56
head layer 2 80.62 83.08 70.50 82.76
head layer 3 79.67 77.41 51.93 54.64

All Conv blocks 92.37 90.79
All Conv blocks 92.01

All blocks 91.62 92.23 80.50 90.86 89.96
All blocks 92.86 88.74
All blocks 92.86

Ens. 92.5

Table 2: Different feature ensembling methods: SimSiam w norm on Cifar10. Note that items spanning multiple columns
imply summation of the corresponding features.

k-Cos k-Cos (Mah) c-Cos c-Cos (Mah) GDE
conv block 2 73.36 76.42 58.54 76.39
conv block 3 79.31 77.83 68.39 77.80
conv block 4 85.47 84.46 78.19 84.40

conv block 1 (1x1) 66.35 67.51 60.75 64.77 64.76
conv block 2 (1x1) 68.05 67.99 61.93 65.46 65.37
conv block 3 (1x1) 74.26 76.49 64.76 72.78 72.75
conv block 4 (1x1) 84.76 84.09 72.08 82.74 83.15

head layer 1 76.95 81.46 64.50 81.24
head layer 2 74.78 77.46 62.95 77.29
head layer 3 75.23 73.86 52.65 68.15

All Conv blocks 86.45 84.75
All Conv blocks 85.89

All blocks 85.19 87.11 72.50 86.17
All blocks 87.54 85.79
All blocks 87.25

Ens. 86.6

Table 3: Different feature ensembling methods: SimSiam w norm on Cifar100

last layer features. [our baseline]

3. features = SimCLR(w/o norm) + NO negative shifting augmentations, ResNet18 ; scoring = KNN + Mahalanobis
Cosine, last layer features. [our baseline]

4. features = SimCLR(w/o norm) + With strong rotation negative shifting augmentations, ResNet18; scoring = KNN +
Mahalanobis Cosine, last layer features [our baseline, closest to CSI (without ensembling) / DROC+DA]

5. Pretrained ResNet18 (on ImageNet), no fine-tuning; scoring = KNN + Mahalanobis Cosine, last layer features [our
baseline]

6. Pretrained ResNet50 (on ImageNet), no fine-tuning; scoring = KNN + Mahalanobis Cosine, last layer features [our
baseline]
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k-Cos k-Cos (Mah) c-Cos c-Cos (Mah) GDE
conv block 2 79.62 82.40 64.71 82.32
conv block 3 81.08 80.22 73.38 80.14
conv block 4 88.92 89.47 82.83 89.42

conv block 1 (1x1) 71.63 71.53 68.56 68.12 68.17
conv block 2 (1x1) 73.85 72.67 70.60 70.12 69.79
conv block 3 (1x1) 74.97 77.00 68.97 74.47 73.50
conv block 4 (1x1) 86.68 89.27 75.68 88.43 88.39

head layer 1 73.88 81.05 48.36 80.63
head layer 2 65.19 72.33 41.26 46.18

All Conv blocks 90.65 89.61
All Conv blocks 90.57

All blocks 87.37 90.16 75.65 89.12
All blocks 90.20 89.10
All blocks 90.35

Ens. 90.3

Table 4: Different feature ensembling methods: SimCLR w norm on Cifar10

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

CSI [32], inc. ensembling augmentations 90.0 99.1 93.2 86.4 93.8 93.4 95.2 98.6 97.9 95.5 94.3
DROC, OC-SVM [31] 88.8 97.5 87.7 82.0 82.4 89.2 89.7 95.6 86.0 90.6 89.0

DROC OC-SVM (DA) [31] 91.0 98.9 88.0 83.2 89.4 90.0 93.5 98.1 96.5 95.1 92.5
DROC Gaussian KDE (DA) [31] 91.0 98.9 88.0 83.2 89.4 90.2 93.5 98.1 96.5 95.1 92.4
Rot. Pred. OC-SVM, from [31] 83.6 96.9 87.9 79.0 90.5 89.5 94.1 96.7 95.0 94.9 90.8
Denoising OC-SVM, from [31] 81.6 92.4 75.9 72.3 82.3 83.1 86.7 91.2 78.0 91.0 83.4

RotNet Rot. Cls, [8] 80.3 91.2 85.3 78.1 85.9 86.7 89.6 93.3 91.8 86.0 86.8
NSA (SimSIAM w norm) [Ours] 90.4 98.6 85.2 85.7 84.1 92.9 92.9 94.5 96.3 90.99 91.52

NSA (SimSIAM w norm) All features [Ours] 93.07 98.44 87.16 83.81 90.34 91.79 96.79 96.16 94.80 96.29 92.86

Table 5: CIFAR10 Per class results

7. Pretrained ResNet152 (on ImageNet), no fine-tuning; scoring = KNN + Mahalanobis Cosine, last layer features [our
baseline]

8. Pretrained ResNet-50 on ImageNet, results from DROC [31]

9. Rippel et al. [26] - Pretrained EfficientNet-B4 on Imagenet + Mahalanobis (no results on our benchmark datasets).

10. Reiss et al [24] Simple baseline “DN2” - Pretrained ResNet-152 on ImageNet, no fine-tuning + kNN=2 scoring from
last layer, presumably euclidean distance

11. Reiss et al. [24] PANDA-EWC - Pretrained ResNet-152 on ImageNet, Fine-tuned last 2 layers on each dataset, with
compactness loss + kNN=2 scoring from last layer, presumably euclidean distance.

12. Xiao et al.[34] - Self-supervised Pretrained ResNet-50. SimCLRv2, Gaussian Mixture Model / Mahalanobis distance .

13. (a) CSI, SimCLR loss only; features = SimCLR (w/o norm), ResNet18 ; scoring = Sim-only contrastive(cosine *
norm). [their results Table 15]; (b) same but with full CSI loss, contrastive With strong rotation negative shifting
augmentations; scoring = contrastive Sim-only (cosine).

14. Full CSI; features = SimCLR(w/o norm) + With strong rotation negative shifting augmentations, ResNet18 ; scoring =
contrastive(cosine * norm) + rotation prediction, on shifted transforms, with ensembles. [their main results, essentially
combining many parts]
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p=0 p=0.05 p=0.10 ∆ (p=0.1 - p=0)

SimSiam(w norm) 91.54 88.08 pjk17e23 86.21 6e8arxn0 5.33
SimSiam(w/o norm) 89.56 85.21 suo8biik 81.79 olj3ysx3 7.77

SimCLR(no neg, w norm) 89.27 83.174n3hybb 77.49ypprggnv 11.78
SimCLR(no neg, w/o norm) 86.49 71.1z0mshamg 63.5 kjok11ok 25.99
SimCLR (neg aug, w norm) 92.91 86.1 dzr6vm0n 83.38 nafeskrq 9.53

SimCLR (neg aug, w/o norm) 91.12 81.5 lyaevmo5 77.94 4j3xb30j 13.18
Pretrained IN18 92.63 90.9 89.3 3.33
Pretrained IN50 94.45 92.18 89.49 4.96
Pretrained IN152 95.82 94.48 91.39 4.43

DROC [31] 89 76.5 73.0 16.0
DROC (DA) [31] 92.5 85.0 80.5 12.0

CSI (results from [14]) 94.3 88.2 84.5 9.8
Semi-Supervised (5% labeled) ELSA (Han et al.) 85.7 83.5 81.6 4.1

Semi-Supervised (5% labeled) ELSA+ (Han et al.) 95.2 93.0 91.1 4.1

Table 6: CIFAR10 pollution experiments. p is the ratio of outlier data inside the training set. the last column is the loss in
performance between training with clean data and a 10% polluted data. Clearly, our proposed modifications reduces the drop
in all cases. With SimSiam we beat standard ELSA which uses 5% labeled data to maintain robustness to pollution, and come
close to ELSA+, which uses TTA and other tricks from CSI on top of the baseline SSL approach.

15. DROC [31] Contrastive (=Deep Representation One-class Classification); features = SimCLR(w/o norm) + NO nega-
tive shifting augmentations ; scoring = (OC-SVM). [their results]

16. DROC [31] Contrastive DA (=Deep Representation One-class Classification); features = SimCLR(w/o norm) + With
strong rotation negative shifting augmentations ; scoring = (OC-SVM). [their results]

17. ELSA [14] - NO negative shifting augmentations - with 1% labeled outliers [14]

18. ELSA+ [14] - With strong rotation negative shifting augmentations (like CSI), and with ensembles - also with 1%
labeled outliers [14]

19. DeepSVDD, Ruff et al. [27], with LeNet architecture Autoencoder + adaptated features. [All results apart from
CIFAR10 from Reiss[24]]

20. DROCC, Goyal et al. [9] - LeNet architecture

21. Geom - Golan et al. [8] - WRN-16-8 Arch.

22. GOAD, Bergman et al. [1] - WRN-16-4 architecture [CIFAR 100 results from CSI with ResNet18] [1]

23. ARNet (formerly called Inv. Trans AE) - Huang et al [17]

24. Rot + Trans, Hendryks et al. [16] - WRN-16-4 architecture (CIFAR 100 results from CSI with ResNet18; IN30 are
ResNet18 Rot+Trans+Attn+Resize; fMNIST results from Reiss [24])

25. SSD [30]; features = SimCLR(w/o norm) + NO negative shifting augmentations ; scoring = Mahalanobis [their results]

G. Detailed ablation study
In Table 7 we show an extensive ablation study demonstrating results on CIFAR10, CIFAR100 and fMNIST of each

variant of the methods we study, with and without our normalization enhancements, for different pollution settings, and
under 5 different feature evaluations metrics (same as those in Appendix C) and the feature ensemble (Ens.) proposed in
Section 2.5. We would like to stress that this study includes training 640 different models and evaluating each model using 6
different metrics.

We can take a few important notes:
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• For all examined situations, the proposed normalization always brings a noticeable improvement. The highest im-
provement is for SimCLR in the presence of pollution; this is consistent with our analysis in the main text.

• For different datasets, different algorithms, and different pollution ratios, the proposed ensembling has the best perfor-
mance most of the time, and the second best otherwise, which shows how generic our proposed ensembling scheme
is.

• k-Cos (Mah) is the metric most often getting second best results among all evaluated, and as such was chosen for our
simple baseline (ensemble-free comparison).

• Although in many times it is not the best or second best metric, c-Cos is the metric that gets the largest boost in
performance after applying normalization, which is expected because as the ID representation gets more compact, the
center is much more representative of the distribution.

H. Background and related work
H.1. Anomaly and OOD detection

Outlier detection is important in a variety of practical tasks, such as detecting problems in a production process, detecting
security events, and acting upon novelties. The most general case is unsupervised novelty detection (or poisoned data):
there are outliers in the training set, and we have no information about them. Then there are degrees of supervision, semi-
supervised (a few outliers are labeled) and fully supervised (all outliers are labeled). Furthermore, in the sub-field of anomaly
detection it is assumed that there are no outliers in the training data. A challenge in OOD detection is that the notion of in- and
out-of-distribution is not well defined, and task-dependent. A good OOD method would generalize to different notions of out-
of-distribution and datasets, e.g. with respect to color, style, perspective and content. Recent approaches in Anomaly/OOD
detection can be categorized in four groups:

• Density-based methods are based on the assumption that models trained to fit the in-distribution data will be less
confident on out-of-distribution data in terms of likelihood of the outputs. Using the likelihood as a detection score has
been shown to be a weak metric [19, 5], and modifications such as entropy, energy [7, 10] and WAIC [5] have been
proposed.

• One-class classifiers are a classic approach for outlier detection and have been adopted to deep learning settings. They
find a decision boundary that separates ID and OOD samples. A margin is introduced to allow generalization [29, 27].

• Reconstruction-based methods model the ID training data by training an encoder and decoder network to reconstruct
the in-distribution data. The reconstruction will generalize less for OOD data such that the reconstruction loss can be
used a the detection metric. Auto-encoders [36, 23] and GANs [28, 6, 22].

• Self-supervised methods leverage the representations learned from self-supervision, combined with different detection
scores. The current state-of-the-art in OOD detection is CSI [32], using representations learned by SimCLR [2] and
the distance to the closest training point in latent space as a detection score. Other approaches train networks with
predefined tasks such as permutations of image patches or rotations [8, 16, 1]].

H.2. Self-supervised learning (SSL)

SSL is a form of unsupervised learning, tackling it through means of supervised learning from pseudo-labels that can
easily be generated. One line of computer vision research uses augmentations as pseudo-labels. These augmentations can be
generated at no additional human cost, for example 90 degree rotations results in four labels. In jigsaw tasks [20] the image
is split in grids, for example 2x2 or 3x3, and shuffled, the resulting position is the prediction target.

Another more recent direction is constrastive learning [21, 15, 18, 13]. In SimCLR [2, 3] every image in a batch is
augmented twice, and the objective is to minimize the distance of the latent representations of the same origin image, while
maximizing the distance to other images in the batch.

Another recent SSL direction is non-contrastive or positive samples only SSL. Bootstrap Your Own Latent (BYOL) [12]
was the first example of this class of algorithms to achieve very competitive results, that even surpasses SimCLR. BYOL gets
away from the problem of representation collapse (first enemy of SSL, usually handled by negative samples) by introducing
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Table 7: Detailed ablation study. Here p is the ratio of outlier data inside the training set. Norm is whether normalization is
applied or not. Ens. is our proposed feature ensembling. Best results are in bold. Second best results are underlined.

Data Algo p Norm k-Cos k-Cos (MAH) c-Cos c-Cos (MAH) GDE Ens.

C10

BYOL

0 84.9 88.5 51.3 83.8 86.2 88.9
0 89.9 90.5 79.5 89.0 89.5 91.9

0.1 62.7 82.9 63.4 82.0 80.5 85.3
0.1 77.5 85.3 78.5 83.6 83.0 88.3

SimSiam

0 86.5 89.5 59.3 85.8 87.9 90.1
0 91.6 91.7 84.9 90.5 91.0 92.5

0.1 65.8 83.2 67.9 81.5 80.7 84.3
0.1 80.6 86.3 82.5 84.9 84.3 88.4

SimCLR

0 79.3 86.3 45.6 84.9 84.7 87.8
0 86.0 88.9 75.2 87.9 88.0 90.3

0.1 53.1 65.6 62.6 65.9 64.7 80.3
0.1 68.8 79.8 80.0 78.7 78.2 86.7

SimCLR(-)

0 88.6 90.7 79.1 90.0 90.1 91.1
0 91.2 92.9 87.3 92.5 92.6 93.0

0.1 71.4 79.6 83.4 80.8 80.2 86.3
0.1 77.9 83.9 87.2 83.6 83.1 87.8

C100

BYOL

0 78.6 79.6 49.4 74.8 76.8 81.3
0 81.0 80.2 59.5 77.5 78.2 83.4

0.1 74.1 76.2 50.8 71.4 73.4 77.7
0.1 78.0 77.8 59.5 75.0 75.7 80.7

SimSiam

0 79.7 81.4 55.6 77.1 78.8 83.3
0 84.5 84.3 72.1 82.7 83.1 86.6

0.1 73.1 78.9 54.7 75.4 75.4 79.7
0.1 79.7 80.3 67.2 78.4 78.4 82.5

SimCLR

0 76.3 77.0 35.5 76.3 78.2 84.2
0 80.1 82.0 68.4 82.6 82.7 86.9

0.1 69.2 75.9 46.5 75.0 73.8 79.9
0.1 75.8 80.0 65.6 79.2 78.6 83.0

SimCLR(-)

0 83.4 84.7 68.5 84.9 85.9 87.9
0 85.8 87.0 80.3 87.4 87.8 89.4

0.1 78.1 80.5 67.3 81.1 81.0 84.3
0.1 81.2 82.8 79.5 83.9 83.6 85.8

fMNIST

BYOL

0 90.5 95.3 84.7 95.0 95.4 95.9
0 93.2 95.1 91.2 94.8 95.0 96.2

0.1 38.1 61.3 84.9 75.5 75.2 86.7
0.1 48.0 73.2 86.9 80.9 80.9 87.9

SimSiam

0 92.7 95.9 84.7 95.7 95.8 95.8
0 93.9 95.0 90.7 94.8 94.9 96.1

0.1 40.3 63.0 88.4 73.3 72.6 86.1
0.1 52.7 75.3 90.3 80.0 79.8 87.8

SimCLR

0 87.6 94.6 70.4 95.0 95.1 96.1
0 91.3 94.9 86.8 94.9 95.0 96.3

0.1 30.9 46.5 88.4 55.5 55.0 86.3
0.1 34.9 53.1 90.6 61.1 60.6 87.5

SimCLR(-)

0 92.7 94.7 86.3 94.5 94.5 95.6
0 94.2 95.7 90.4 95.6 95.6 95.9

0.1 60.9 78.7 90.5 83.7 83.5 90.4
0.1 65.3 80.9 92.1 84.4 84.3 90.9
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assymetry in the network architecute through the idea of a prediction network after the project head, it also uses an exponential
moving average of the weights of the network as a target representation. SimSiam [4] made a significant analysis on BYOL
and found that using a moving average of the weights wasnot necessary and just a simple stop-grad operation was enough.
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