	054
	055
	050
Sunnlementary Material for	057
	059
No Shifted Augmentations (NSA): compact distributions for robust	t ₀₆₀
self-supervised Anomaly Detection	06 1
	062
	063
Anonymous WACV 2023 Algorithms Track submission	064
Alloliyinous wACV 2025 Algorithms Hack submission	065
	Ubt
Paper ID 577	100
	069
	070
A. Plots for evaluations during training	071
ame curves for 4 distinct classes of CIFAR10, and also under 3 different metrics. They appear in Figure 1 (Sin nd Linear probes during training), Figure 2 (SimCLR Kappa and MMD during training), Figure 3 (SimSiam A raining), Figure 4 (SimSiam Kappa and MMD during training), and Figure 5 (SimCLR with norm AUC). The sa s in the main text are seen to hold across these detailed variants.	nCLR AUC ⁰⁷ AUC during ⁰⁷ me findings ⁰⁷ 070
Detect details	078
5. Dataset details	079
putliers. We resized images to 32 x 32 for all datasets apart from ImageNet30 which uses the standard ImageNet rchitecture's transformation of a 224-pixel center-cropped region from the 256 x 256 input image.	t ResNet-18082 083
C. Comparison of scoring with different feature evaluations, metrics & ensembling	085
As discussed in Section 2.5, we compare the default scoring used in our main experiments (the encoder's last lating S_{k-Cos}) with a feature ensembling evaluation scheme consisting of these scores summed across feature main encoder backbone network, and projection heads from either SimSiam or SimCLR. In the following tables we us eature maps:	yer features ps from the se following 080 090 090
• conv_block_n: The output feature map from blockn of the convolutional backbone. Which is first direct from 2D to 1D before evaluation.	tly flattened ⁰⁹ 092
• conv_block_ n (1x1): Same as conv_block_ n but after pooling to a size of 1x1.	094
• head_layer_n: The output feature map from layer n of the projection head.	09
• All Conv blocks: The sum of the scores of all convolutional blocks, using the distance specified in consummed across table columns merged in table.	olumn, then ⁰⁹⁷ 098
• All blocks: The sum of the scores of all network internal feature maps, using the distance specified in consummed across table columns merged in table.	099 100 olumn, then 10
	s and c-Cos
• Ens.: The sum of <i>k</i> - <i>Cos</i> and <i>k</i> - <i>Cos</i> (<i>Mah</i>) for 2D feature maps (e.g. convolutional feature maps) and <i>c</i> - <i>Co</i> (<i>Mah</i>) for 1D feature maps (e.g. projection heads).	104 100 100 100 100 100 100 100 100 100
 Ens.: The sum of <i>k</i>-Cos and <i>k</i>-Cos (Mah) for 2D feature maps (e.g. convolutional feature maps) and <i>c</i>-Co (Mah) for 1D feature maps (e.g. projection heads). We also investigate 5 different metric functions for computing the OOD score, namely: 	104 104 104

• k-Cos: Cosine distance to closest (k=1) training vector, introduced in Section 2.5

Figure 1: Training SimCLR on classes 0,1,2,3 from CIFAR10 and evaluating the representation during training. (a) Using₁₉₃ Gaussian density estimation (GDE) [25]. (b) k-Cos cosine distance to the closest (k=1) point in ID data. (c) c-Cos cosine₁₉₄ distance to the mean direction in ID data. Both these are defined in more detail in Section 2.5. (d) Linear evaluation [35]₁₉₅ of learned embedding. (d) Weighted nearest neighbor classifier (k-NN) [33]. Solid lines represent k = 1 and dashed lines₁₉₆ represent k = 20

144		198
145	• k-Cos (Mah): Same but evaluated in Mahalanohis space	199
146	<i>k-cos (man)</i> . Same but evaluated in Manananoois space.	200
147	• c-Cos: Cosine distance to the mean of all the training set vectors, introduced in Section 2.5	201
148	• a Cas (Mak). Some but evelvated in Makalanakia anaga	202
149	• <i>c</i> - <i>Cos</i> (<i>Man</i>): Same but evaluated in Manalanobis space.	203
150	• <i>GDE</i> : A Gaussian Kernel density estimator, we use the same configuration as in [31].	204
151 152 153 154	Tables 2,3,4 show an extensive evaluation of presented models at most internal layers and a variety of scoring metrics should highlight the fact that each number presented in those tables is the average across all classes in the dataset, with experiment per class i.e. 10 experiments for CIFAR10, and 20 experiments for CIFAR100. We can notice:	205 . We ²⁰⁶ ^{1 one} 207 208
155	• The Cosine Mahalanobis distance mostly outperforms most other evaluation metrics, sometimes a by large gap.	209
156 157 158	• There is a consistent improvement associated with ensembling of feature scores. This is true across models and a datasets.	210 ^{CTOSS} 211 212
159 160	• We note this type of feature ensembling can be considered free, computation-wise, compared with the ensembling in e.g. CSI, that slows down the method significantly at inference.	used ²¹³ 214

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2: Training SimCLR on classes 0,1,2,3 from CIFAR10 and monitoring the learned vMF ID and OOD representations²⁸⁶ during training. (a) κ progress during training; solid lines are ID data and dashed are OOD data. (b) The MMD [11] between²⁸⁷ the learned representation and samples from uniform distribution on a unit hypersphere (lower is more uniform). ²⁸⁸

D. CIFAR 10 per-class results

Here in Table 5 we show the per class results for each of the CIFAR 10 classes trained for one-class classification against₃₀₉ the others, and compare our NSA method (SimSIAM with Norm, no ensembling augmentations), with (i) last layer features₃₁₀ only and (ii) summing all features, with other recent works that also report these results. 311

E. Additional pollution results

Table 6 shows additional CIFAR10 results in the presence of pollution, also more comparisons.

F. Additional comparison with previous results from literature

264Table 1 gives a more detailed overview of related OOD / One Class Classification results from the literature, and compari-318265son with variants of our baseline (ensemble free) variants of SimSiam, SimCLR, along with our implementation of pretrained319266ResNets (as an additional basline for comparison to other pretrained methods.320

The pretrained results also serve to indicate where these types of approaches can fall down, and the issues in a with321 fairly comparing these pretrained methods with from-scratch trained approaches in the Anomaly/OOD detection context (It322 is unsurprising that pretraining a representation on ImageNet does well at distinguishing "unseen" ImageNet30 classes in a323

WACV #577

[0]

_

- [3]

[2]

- [1]

-- [1]

Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. WACV 2023 Submission #577.

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

		CIFAR10	CIFAR100	IN30	fMNIST	SVHN
	1. SS (n) = SimSiam with norm, aka "NSA"	91.54	84.09	80.88	95.15	94.91
ILS	2. $SC(n) = SimCLR(w \text{ norm, no neg aug})$	89.27	83.95	75.17	94.61	93.84
õ	3. SC) = SimCLR(w/o norm, no neg aug)	86.49	80.51	75.17	94.61	93.84
	4. SS(-) = SimCLR(w/o norm, neg aug)	91.12	86.68	76.97	95.47	92.17
	5. Pretrained ResNet18* [Ours]	93.63	92.64	99.78	94.35	61.06
E	6. Pretrained ResNet50* [Ours]	94.45	94.68	99.91	95.16	66.28
<u> </u>	7. Pretrained ResNet152* [Ours]	95.82	95.21	99.96	94.99	63.41
	8. PT ResNet50 (DROC [31])*	80.0	83.7	-	91.8	-
trai	10. ResNet152 (DN2 [24])*	92.5	94.1	-	94.5	-
Pre	11. ResNet152 (PANDA [24])*	96.2	94.1	-	95.6	-
	12. Self-Sup. PT R50. Xiao et al.[34]*	93.8	92.6	-	94.4	-
33	13. CSI (SimCLR loss only)**	87.9	-	-	-	-
[fii	13. CSI (SimCLR w neg aug only)**	90.1	86.5	83.1	-	-
Shi	14. CSI (Full)**	94.3	89.6†	91.6	-	-
st.	15. DROC, Contrastive	89.0	82.4	-	93.9	-
Di	16. DROC, Contrastive DA	92.5	86.5	-	94.8	-
	19. DeepSVDD [27]	64.8	67.0	-	84.8	-
spo	20. DROCC [9]	74.2	-	-	-	-
sthc	21. Geom (Golan et al.) [8]**	86.0	78.7	-	93.5	
М	22. GOAD (Bergman) [1]**	88.2	74.5	-	94.1	-
Jer	23. ARNet (Huang) [17]**	86.6	78.8	-	93.33	
Oth	24. Hendryks et al. [16]**	90.1	79.8	85.7	93.2	-
	25.SSD [30]	90.0	-	-	-	-

Table 1: One-Class Classification Summary results reported in the literature on various datasets, plus some of our results; all⁵¹⁶ figures are AUC. * indicates methods trained on external additional data, which may overlap in scope with the "unseen" OOD data. ** indicates method using test-time data augmentation / ensembling during evaluation, which can involve drastically $\frac{518}{519}$ slower inference.

our proposed modifications, and "w/o norm" is the standard version of the architecture (SimCLR or SimSiam) without these⁵²² modifications. "(-)" means including strong distributionally negative shifted augmentations, using randomly the four 0, 90,523 180, and 270 degree rotations, following the approach of CSI [32].

We note in particular that CSI's method combines many parts (contrastive+classification losses and scoring functions, 525 plus ensembling) which each contribute something and add up to give good results. Our goal of instead showing baseline⁵²⁶ SimCLR results with / without the norm, and with/without shifted augmentations is to create a more straightforward baseline⁵²⁷ to compare with. We note improved results are possible with our method adding these additional features such as ensembling,⁵²⁸ but also at additional computational cost, as is the case with CSI.

On the other hand, our pretrained baselines obtain very good results equal or exceeding PANDA [24]'s fine-tuned results⁵³⁰ on datasets that are similar in nature to ImageNet that they are pretrained on; this exemplifies the benefits of our chosen⁵³¹ scoring metric $S_{NSA} = S_{k-Cos}$ on good representations in general. However we also show datasets where this approach falls⁵³² down, compared with self-supervised methods.

For each of the methods, here is a more detailed description of the features, networks, scoring functions etc. used for⁵³⁴ comparison:

1. NSA [ours]; features = SimSiam (with norm), ResNet18; scoring = KNN + Mahalanobis Cosine, last layer features.

2. features = SimCLR(w norm) + NO negative shifting augmentations, ResNet18; scoring = KNN + Mahalanobis Cosine, $\frac{330}{539}$

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

		k-Cos	k-Cos (Mah)	c-Cos	c-Cos (Mah)	GDE	59			
	conv_block_2	80.29	83.58	65.35	83.52		59			
	conv_block_3	85.87	83.59	75.81	83.53		59			
	conv_block_4	92.21	91.20	88.35	91.12		59			
	conv_block_1 (1x1)	71.29	70.85	68.39	67.37	67.39	59			
	conv_block_2 (1x1)	73.19	71.93	70.94	69.66	69.39	59			
	conv_block_3 (1x1)	81.46	83.47	73.60	79.66	79.32	60			
	conv_block_4 (1x1)	91.85	91.54	84.88	90.52	91.04	60			
	head_layer_1	82.64	87.84	71.18	87.56		60			
	head_layer_2	80.62	83.08	70.50	82.76		60			
	head_layer_3	79.67	77.41	51.93	54.64		60			
	All Conv blocks		92.37 90.79 92.01		90.79		00			
	All Conv blocks					00				
	All blocks	91.62	92.23	80.50	90.86	89.96	60			
	All blocks		92.86		88.74		60			
	All blocks			92.86			61			
	Ens.	92.5				92.5				61
able 2: Different f	eature ensembling meth	ods: Sim	Siam w norm o	on Cifar1). Note that iter	ns spann	61 ing multiple columns ₆₁			
nply summation of	the corresponding featu	ires.					61			
							61			

	k-Cos	k-Cos (Mah)	c-Cos	c-Cos (Mah)	GDE
conv_block_2	73.36	76.42	58.54	76.39	
conv_block_3	79.31	77.83	68.39	77.80	
conv_block_4	85.47	84.46	78.19	84.40	
conv_block_1 (1x1)	66.35	67.51	60.75	64.77	64.76
conv_block_2 (1x1)	68.05	67.99	61.93	65.46	65.37
conv_block_3 (1x1)	74.26	76.49	64.76	72.78	72.75
conv_block_4 (1x1)	84.76	84.09	72.08	82.74	83.15
head_layer_1	76.95	81.46	64.50	81.24	
head_layer_2	74.78	77.46	62.95	77.29	
head_layer_3	75.23	73.86	52.65	68.15	
All Conv blocks		86.45		84.75	
All Conv blocks		85.89			
All blocks	85.19	87.11	72.50	86.17	
All blocks		87.54		85.79	
All blocks					
Ens.	86.6				

Table 3: Different feature ensembling methods: SimSiam w norm on Cifar100

last layer features. [our baseline]

- 3. features = SimCLR(w/o norm) + NO negative shifting augmentations, ResNet18 ; scoring = KNN + Mahalanobis⁶³⁸
 Cosine, last layer features. [our baseline]
 640
- 4. features = SimCLR(w/o norm) + With strong rotation negative shifting augmentations, ResNet18; scoring = KNN +641 Mahalanobis Cosine, last layer features [our baseline, closest to CSI (without ensembling) / DROC+DA]
 642
- 5. Pretrained ResNet18 (on ImageNet), no fine-tuning; scoring = KNN + Mahalanobis Cosine, last layer features [our 643 baseline]
 644 645
- Pretrained ResNet50 (on ImageNet), no fine-tuning; scoring = KNN + Mahalanobis Cosine, last layer features [our646 baseline]

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

			k-C	os	k-Cos (M	[ah]	c-Cos	c-Cos	(Mah)	GDE	,			702
		conv_block_2	79.6	52	82.40	,	64.71	82	.32		_			703
	conv_block_3		81.0)8	80.22		73.38	80	.14		_			704
	conv_block_4		88.9	2	89.47		82.83	89	.42		_			705
	conv_block_1 (1x1)		71.6	53	71.53		68.56	68	.12	68.17	,			706
		conv_block_2 (1x1)	73.8	35	72.67		70.60	70	.12	69.79)			707
		conv_block_3 (1x1)	74.9	97	77.00		68.97	74	.47	73.50)			708
		conv block 4 (1x1)	86.6	58	89.27		75.68	88	.43	88.39)			709
		head_laver_1	73.8	38	81.05		48.36	80	.63		_			710
		head layer 2	65.1	9	72.33		41.26	46	.18		_			711
		All Conv blocks		<u> </u>	90.65			89.61			_			712
		All Conv blocks					90.57	0,101			_			713
		All blocks	87 3	37	90.16		75.65	89	12		_			714
		All blocks	07.0	<u> </u>	20 20		10.00	89 10			_			715
		All blocks			.20		90.35	07.10			_			/16
		Fns					90.3							/1/
		Liis.					70.5							718
		Table 4: Different	feature	ense	mbling m	ethod	s: SimC	LR w no	orm on	Cifar10				719
					0									720
			Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Mean	721
C	SI [32], inc. ensemi	bling augmentations	90.0	99.1	93.2	86.4	93.8	93.4	95.2	98.6	97.9	95.5	94.3	722
	DROC, OC	-SVM [31]	88.8	97.5	87.7	82.0	82.4	89.2	89.7	95.6	86.0	90.6	89.0	724
	DROC OC-SV	/M (DA) [31]	91.0	98.9	88.0	83.2	89.4	90.0	93.5	98.1	96.5	95.1	92.5	725
	DROC Gaussian	KDE (DA) [31]	91.0	98.9	88.0	83.2	89.4	90.2	93.5	98.1	96.5	95.1	92.4	726
	Rot. Pred. OC-S	SVM, from [31]	83.6	96.9	87.9	79.0	90.5	89.5	94.1	96.7	95.0	94.9	90.8	727
	RotNet Ro	$\mathbf{r} = \mathbf{r} + $	81.0	92.4	853	78.1	82.3	85.1	80.7	91.2	78.0	91.0 86.0	85.4	728
	NSA (SimSIAM	w norm) [Ours]	90.4	98.6	5 85.2	85.7	84.1	92.9	92.9	94.5	96.3	90.99	91.52	729
NSA	A (SimSIAM w nor	m) All features [Ours]	93.07	98.44	4 87.16	83.81	90.34	91.79	96.79	96.16	94.80	96.29	92.86	730
		1												731
			T 1 1			D 1								732
			Table	e 5: C	JIFAR10	Per cla	ass resul	ts						733
														734
7	Pretrained Res	Net152 (on ImageNe	t) no fi	ne_ti	ining: see	oring .	– KNN	⊥ Maha	lanohis	Cosine	last la	ver feat	ures for	735
7.	haseline]	(on magerie	<i>l)</i> , no n	ne-u	uning, see	Jing .	- 131414	T Ivialia	anouis	Cosilie	iast ia	yer reat	uies [ot	736
	basennej													737
8.	Pretrained Resl	Net-50 on ImageNet,	results	from	DROC [31]								738
0	D: 1 / 1 / 2				т		r 1 1	1. (1.	1	1	1 1 .		739
9.	Rippel et al. [2	b] - Pretrained Efficie	entinet-1	B4 01	n Imagene	et + M	lanalano	DIS (no	results of	on our c	enchma	ark data	isets).	740
10.	Reiss et al [24]	Simple baseline "DN	N2" - Pi	etrai	ned ResN	et-152	2 on Ima	geNet.	no fine-	tuning	+ kNN	=2 scor	ing from	n ⁷⁴¹
	last layer, presu	mably euclidean dist	ance					0		8			0	742
	J / 1	5												743
11.	Reiss et al. [24] PANDA-EWC - Pr	etrained	l Res	Net-152 (on Im	ageNet,	Fine-tu	ned las	t 2 laye	rs on ea	hch data	iset, wit	h 744
	compactness lo	ss + kNN=2 scoring	from la	st lay	er, presur	nably	euclide	an dista	nce.					745
12	$\mathbf{Y}_{120} \text{ et al } [34]$	Self supervised Pre	trained	PacN	Jet 50 Si	mCLI	and Car	iccian M	livtura	Model /	Mahal	anobis	listance	746
12.		- Self-Supervised The	uameu	Rest	NCI-30. SI	IIICLI	xv2, Oa	1551411 1	IIXture	widdei /	wianai		instance	747
13.	(a) CSI, SimCl	LR loss only; feature	es = Si	mCL	R (w/o n	orm),	ResNet	18 ; sco	oring =	Sim-or	ly cont	rastive(cosine	* 748
	norm). [their r	results Table 15]; (b)	same	but v	with full C	CSI lo	oss, cont	rastive	With st	rong ro	tation 1	negative	shiftin	g 749
	augmentations;	scoring = contrastive	e Sim-o	nly (cosine).									750
1 4			、 .			, , .		1.0.1			.	T (10		751
14.	Full CSI; featur	res = SimCLR(w/o not)	orm) + '	with	strong ro	tation	negative	e shiftin	g augm	entation	is, KesN	vet 18; s	scoring	=752
	contrastive(cos	ine * norm) + rotation	n predic	tion,	on shifted	i trans	storms, v	vith ens	embles	. [their	main re	sults, es	sentiall	y 753
	combining man	iy parts]												754
														755

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

	p=0	p=0.05	p=0.10	Δ (p=0.1 - p=0)
SimSiam(w norm)	91.54	88.08 pjk17e23	86.21 6e8arxn0	5.33
SimSiam(w/o norm)	89.56	85.21 suo8biik	81.79 olj3ysx3	7.77
SimCLR(no neg, w norm)	89.27	83.174n3hybb	77.49ypprggnv	11.78
SimCLR(no neg, w/o norm)	86.49	71.1z0mshamg	63.5 kjok11ok	25.99
SimCLR (neg aug, w norm)	92.91	86.1 dzr6vm0n	83.38 nafeskrq	9.53
SimCLR (neg aug, w/o norm)	91.12	81.5 lyaevmo5	77.94 4j3xb30j	13.18
Pretrained IN18	92.63	90.9	89.3	3.33
Pretrained IN50	94.45	92.18	89.49	4.96
Pretrained IN152	95.82	94.48	91.39	4.43
DROC [31]	89	76.5	73.0	16.0
DROC (DA) [31]	92.5	85.0	80.5	12.0
CSI (results from [14])	94.3	88.2	84.5	9.8
Semi-Supervised (5% labeled) ELSA (Han et al.)	85.7	83.5	81.6	4.1
Semi-Supervised (5% labeled) ELSA+ (Han et al.)	95.2	93.0	91.1	4.1

Table 6: CIFAR10 pollution experiments. p is the ratio of outlier data inside the training set. the last column is the loss in performance between training with clean data and a 10% polluted data. Clearly, our proposed modifications reduces the drop⁸²⁹ in all cases. With SimSiam we beat standard ELSA which uses 5% labeled data to maintain robustness to pollution, and come⁸³⁰ close to ELSA+, which uses TTA and other tricks from CSI on top of the baseline SSL approach.

- 15. DROC [31] Contrastive (=Deep Representation One-class Classification); features = SimCLR(w/o norm) + NO nega-834 tive shifting augmentations; scoring = (OC-SVM). [their results] 16. DROC [31] Contrastive DA (=Deep Representation One-class Classification); features = SimCLR(w/o norm) + With strong rotation negative shifting augmentations; scoring = (OC-SVM). [their results] 17. ELSA [14] - NO negative shifting augmentations - with 1% labeled outliers [14] 18. ELSA+ [14] - With strong rotation negative shifting augmentations (like CSI), and with ensembles - also with $1\%_{841}$ labeled outliers [14] 19. DeepSVDD, Ruff et al. [27], with LeNet architecture Autoencoder + adaptated features. [All results apart from⁸⁴³ CIFAR10 from Reiss^[24]] 20. DROCC, Goyal et al. [9] - LeNet architecture 21. Geom - Golan et al. [8] - WRN-16-8 Arch. 22. GOAD, Bergman et al. [1] - WRN-16-4 architecture [CIFAR 100 results from CSI with ResNet18] [1] 23. ARNet (formerly called Inv. Trans AE) - Huang et al [17] 24. Rot + Trans, Hendryks et al. [16] - WRN-16-4 architecture (CIFAR 100 results from CSI with ResNet18; IN30 are852
- ResNet18 Rot+Trans+Attn+Resize; fMNIST results from Reiss [24])
 - 25. SSD [30]; features = SimCLR(w/o norm) + NO negative shifting augmentations ; scoring = Mahalanobis [their results] $_{855}^{0000}$

G. Detailed ablation study

In Table 7 we show an extensive ablation study demonstrating results on CIFAR10, CIFAR100 and fMNIST of each858 variant of the methods we study, with and without our normalization enhancements, for different pollution settings, and859 under 5 different feature evaluations metrics (same as those in Appendix C) and the feature ensemble (Ens.) proposed in860 Section 2.5. We would like to stress that this study includes training 640 different models and evaluating each model using 6861 different metrics.

We can take a few important notes:

- • For all examined situations, the proposed normalization always brings a noticeable improvement. The highest im-provement is for SimCLR in the presence of pollution; this is consistent with our analysis in the main text.
- For different datasets, different algorithms, and different pollution ratios, the proposed ensembling has the best perfor-921 mance most of the time, and the second best otherwise, which shows how generic our proposed ensembling scheme922 is.
 - • k-Cos (Mah) is the metric most often getting second best results among all evaluated, and as such was chosen for our925 simple baseline (ensemble-free comparison).
 - • Although in many times it is not the best or second best metric, c-Cos is the metric that gets the largest boost in performance after applying normalization, which is expected because as the ID representation gets more compact, the center is much more representative of the distribution.

H. Background and related work

H.1. Anomaly and OOD detection

Outlier detection is important in a variety of practical tasks, such as detecting problems in a production process, detecting⁹³⁵ security events, and acting upon novelties. The most general case is unsupervised novelty detection (or poisoned data):936 there are outliers in the training set, and we have no information about them. Then there are degrees of supervision, semi-⁹³⁷ supervised (a few outliers are labeled) and fully supervised (all outliers are labeled). Furthermore, in the sub-field of anomaly⁹³⁸ detection it is assumed that there are no outliers in the training data. A challenge in OOD detection is that the notion of in- and ⁹³⁹ out-of-distribution is not well defined, and task-dependent. A good OOD method would generalize to different notions of out-940 of-distribution and datasets, e.g. with respect to color, style, perspective and content. Recent approaches in Anomaly/OOD⁹⁴¹ detection can be categorized in four groups:

- Density-based methods are based on the assumption that models trained to fit the in-distribution data will be less944 confident on out-of-distribution data in terms of likelihood of the outputs. Using the likelihood as a detection score has⁹⁴⁵ been shown to be a weak metric [19, 5], and modifications such as entropy, energy [7, 10] and WAIC [5] have been⁹⁴⁶ proposed.
- **One-class classifiers** are a classic approach for outlier detection and have been adopted to deep learning settings. They 949 find a decision boundary that separates ID and OOD samples. A margin is introduced to allow generalization [29, 27].950
- • Reconstruction-based methods model the ID training data by training an encoder and decoder network to reconstruct the in-distribution data. The reconstruction will generalize less for OOD data such that the reconstruction loss can be $\frac{952}{953}$ used a the detection metric. Auto-encoders [36, 23] and GANs [28, 6, 22].
- Self-supervised methods leverage the representations learned from self-supervision, combined with different detection⁹⁵⁵ scores. The current state-of-the-art in OOD detection is CSI [32], using representations learned by SimCLR [2] and 956 the distance to the closest training point in latent space as a detection score. Other approaches train networks with⁹⁵⁷ predefined tasks such as permutations of image patches or rotations [8, 16, 1]].

H.2. Self-supervised learning (SSL)

SSL is a form of unsupervised learning, tackling it through means of supervised learning from pseudo-labels that can easily be generated. One line of computer vision research uses augmentations as pseudo-labels. These augmentations can be 963 generated at no additional human cost, for example 90 degree rotations results in four labels. In jigsaw tasks [20] the image $\frac{900}{964}$ is split in grids, for example 2x2 or 3x3, and shuffled, the resulting position is the prediction target.

Another more recent direction is constrastive learning [21, 15, 18, 13]. In SimCLR [2, 3] every image in a batch is augmented twice, and the objective is to minimize the distance of the latent representations of the same origin image, while $\frac{967}{967}$ maximizing the distance to other images in the batch.

Another recent SSL direction is non-contrastive or positive samples only SSL. Bootstrap Your Own Latent (BYOL) [12] was the first example of this class of algorithms to achieve very competitive results, that even surpasses SimCLR. BYOL gets away from the problem of representation collapse (first enemy of SSL, usually handled by negative samples) by introducing

WACV 2023 Submission #577. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

972 Table 7: Detailed ablation study. Here \mathbf{p} is the ratio of outlier data inside the training set. Norm is whether normalization is¹⁰²⁶ 973 1027 applied or not. Ens. is our proposed feature ensembling. Best results are in **bold**. Second best results are underlined. 974 1028 975 1029 Data k-Cos k-Cos (MAH) c-Cos c-Cos (MAH) GDE Ens. Algo Norm p 976 1030 977 1031 978 1032 0 84.9 83.8 88.9 88.5 51.3 86.2 979 1033 0 89.9 90.5 79.5 89.0 89.5 91.9 BYOL 980 1034 0.1 82.9 82.0 85.3 62.7 63.4 80.5 981 1035 0.1 77.5 <u>85.3</u> 78.5 83.6 83.0 88.3 982 1036 0 86.5 89.5 59.3 85.8 87.9 90.1 983 1037 0 91.7 90.5 92.5 91.6 84.9 91.0 SimSiam 984 1038 0.1 65.8 83.2 67.9 81.5 80.7 84.3 985 1039 0.1 80.6 86.3 82.5 84.9 84.3 88.4 986 1040 0 79.3 86.3 45.6 84.9 84.7 87.8 987 1041 0 88.9 87.9 88.0 90.3 86.0 75.2 988 SimCLR 1042 0.1 65.9 64.7 80.3 C10 53.1 65.6 62.6 989 1043 0.1 68.8 79.8 80.0 78.7 78.2 86.7 990 1044 79.1 90.0 90.1 91.1 0 88.6 90.7 991 1045 0 92.5 91.2 92.9 87.3 92.6 93.0 992 SimCLR(-) 1046 0.1 71.4 79.6 83.4 80.8 80.2 86.3 993 1047 0.1 77.9 83.9 87.2 83.6 83.1 87.8 994 1048 0 78.6 79.6 49.4 74.8 76.8 81.3 995 1049 0 83.4 80.2 59.5 77.5 78.2 81.0 996 1050 BYOL 77.7 0.1 74.1 76.2 50.8 71.4 73.4 997 1051 0.1 75.0 75.7 78.0 77.8 59.5 80.7 998 1052 79.7 0 81.4 77.1 78.8 83.3 55.6 999 1053 0 84.3 84.5 72.1 82.7 83.1 86.6 1000 1054 SimSiam 0.1 75.4 79.7 73.1 78.9 54.7 75.4 1001 1055 0.1 79.7 80.3 78.4 78.4 82.5 1002 67.2 1056 78.2 0 76.3 77.0 35.5 76.3 84.2 1003 1057 1004 0 80.1 82.0 68.4 82.6 82.7 86.9 1058 C100 SimCLR 1005 0.1 69.2 75.9 46.5 75.0 73.8 79.9 1059 1006 1060 0.1 75.8 80.0 65.6 79.2 78.6 83.0 1007 0 1061 83.4 84.7 68.5 84.9 85.9 87.9 1008 1062 0 85.8 87.0 80.3 87.4 87.8 89.4 SimCLR(-) 1009 1063 0.1 78.1 80.5 81.1 81.0 84.3 67.3 1010 1064 0.1 81.2 82.8 79.5 83.9 83.6 85.8 1011 1065 0 90.5 95.3 84.7 95.0 95.4 95.9 1012 1066 0 <u>95.1</u> 91.2 94.8 95.0 96.2 93.2 BYOL 1013 1067 0.1 38.1 61.3 84.9 75.5 75.2 86.7 1014 1068 0.1 48.0 73.2 86.9 80.9 80.9 87.9 1015 1069 92.7 95.9 95.7 95.8 0 84.7 95.8 1016 1070 0 93.9 <u>95.0</u> 90.7 94.8 94.9 96.1 SimSiam 1017 1071 0.1 40.3 63.0 88.4 73.3 72.6 86.1 1018 1072 0.1 90.3 79.8 52.7 75.3 80.0 87.8 1019 1073 0 94.6 70.4 95.0 95.1 96.1 87.6 1020 1074 0 91.3 94.9 94.9 95.0 96.3 86.8 **fMNIST** SimCLR 1021 1075 0.1 55.5 30.9 46.5 88.4 55.0 86.3 1022 1076 0.1 34.9 53.1 90.6 61.1 60.6 87.5 1023 1077 0 92.7 94.7 94.5 94.5 95.6 86.3 1024 1078 0 94.2 <u>95.7</u> 90.4 95.6 95.6 95.9 1025 1079 SimCLR(-) 0.1 <u>90.4</u> 60.9 90.5 83.7 83.5 78.7

0.1

65.3

80.9

92.1

84.4

84.3

90.9

1080 assymetry in the network architecute through the idea of a prediction network after the project head, it also uses an exponential 1081 moving average of the weights of the network as a target representation. SimSiam [4] made a significant analysis on BYOL¹¹³⁵ 1082 1136 and found that using a moving average of the weights wasnot necessary and just a simple stop-grad operation was enough. 1083 1137 1084 1138 References 1085 1139 [1] Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. In International Conference on Learning1140 1086 Representations, 2020. 5, 8, 9 1087 1141 [2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual 1142 1088 representations. In International Conference on Machine Learning, 2020. 9 1089 1143 [3] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-supervised models are strong 1090 semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020. 9 1145 1091 [4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint arXiv:2011.10566, 2020. 11 1092 1146 [5] Hyunsun Choi, Eric Jang, and Alexander A Alemi. WAIC, but Why? Generative Ensembles for Robust Anomaly Detection. Oct. 1147 1093 2018. 9 1094 [6] Lucas Deecke, Robert A Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Kloft. Image Anomaly Detection with Generative¹¹⁴⁸ 1149 1095 Adversarial Networks. ECML/PKDD, 11051(3):3-17, 2018. 9 1096 1150 [7] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. CoRR, 2019. 9 1097 [8] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. In Advances in Neural Information¹¹⁵¹ 1098 1152 Processing Systems, 2018. 5, 7, 8, 9 1099 [9] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. Drocc: Deep robust one-class classifica-1153 1100 tion. In International Conference on Machine Learning, pages 3711–3721. PMLR, 2020. 5, 8 1154 1101 [10] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin Swersky. Your classi-1155 fier is secretly an energy based model and you should treat it like one. CoRR, 2019. 9 1102 1156 [11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. The1157 1103 Journal of Machine Learning Research, 13(1):723–773, 2012. 3 1104 1158 [12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, 1159 1105 Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to 1160 1106 self-supervised learning. arXiv preprint arXiv:2006.07733, 2020. 9 1107 1161 [13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Remi Munos, and Michal 1108 1109 Valko. Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning. June 2020. 9 [14] Sungwon Han, Hyeonho Song, Seungeon Lee, Sungwon Park, and Meeyoung Cha. Elsa: Energy-based learning for semi-supervised ¹¹⁶⁴ 1110 1111 1165 anomaly detection. arXiv preprint arXiv:2103.15296, 2021. 8 1112 [15] K He, Kaiming He, Haoqi Fan, H Fan, Yuxin Wu, Y Wu, S Xie, Saining Xie, R Girshick arXiv preprint arXiv 1911.05722, Ross¹¹⁶⁶ 1113 1167 Girshick, and 2019. Momentum Contrast for Unsupervised Visual Representation Learning. arXiv.org, Nov. 2019. 9 1114 [16] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning can improve model robustness 1168 1115 and uncertainty. In Advances in Neural Information Processing Systems, pages 15663-15674, 2019. 5, 8, 9 1169 1116 [17] Chaoqin Huang, Fei Ye, Jinkun Cao, Maosen Li, Ya Zhang, and Cewu Lu. Attribute Restoration Framework for Anomaly Detection.1170 1117 Nov. 2019. 5, 8 1171 1118 [18] Ishan Misra and Laurens van der Maaten. Self-Supervised Learning of Pretext-Invariant Representations. Dec. 2019. 9 1172 [19] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do Deep Generative Models Know1173 1119 What They Don't Know? Oct. 2018. 9 1120 1174 [20] Mehdi Noroozi and Paolo Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. Mar. 2016. 9 1121 1175 [21] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. CoRR, 2018. 9 1122 1176 [22] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN: One-class Novelty Detection Using GANs with Constrained Latent 1123 Representations. Mar. 2019. 9 1124 1178 [23] Stanislav Pidhorskyi, Ranya Almohsen, Donald A Adjeroh, and Gianfranco Doretto. Generative Probabilistic Novelty Detection with 1179 1125 Adversarial Autoencoders. July 2018. 9 [24] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. PANDA: Adapting Pretrained Features for Anomaly Detection and 1126 1127 Segmentation. Oct. 2020. 5, 7, 8 1128 1182 [25] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741:659–663, 2009. 2 1129 [26] Oliver Rippel, Patrick Mertens, and Dorit Merhof. Modeling the Distribution of Normal Data in Pre-Trained Deep Features for¹¹⁸³ 1184 1130 Anomaly Detection. May 2020. 7 1131 [27] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, ¹¹⁸⁵ 1132 and Marius Kloft. Deep one-class classification. In International conference on machine learning, pages 4393-4402. PMLR, 2018.1186 1133 5, 8, 9 1187

1188	[28]	Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised Anomaly
1189		Detection with Generative Adversarial Networks to Guide Marker Discovery. Mar. 2017. 9
1190	[29]	Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C Platt. Support vector method for novelty
1191		detection. In Advances in Neural Information Processing Systems, 2000. 9
1192	[30]	Vikash Sehwag, Mung Chiang, and Prateek Mittal. {SSD}: A unified framework for self-supervised outlier detection. In <i>International</i> ¹²⁴⁶
1193		Conference on Learning Representations, 2021. 5, 8
1194	[31]	Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evaluating representations for deep one-1248
1195		class classification. <i>arXiv preprint arXiv:2011.02578</i> , 2020. 1, 2, 5, 7, 8 1249
1196	[32]	Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. CSI: Novelty detection via contrastive learning on distributionally1250
1197		shifted instances. Advances in Neural Information Processing Systems, 33:11839–11852, 2020. 1, 5, 7, 9
1198	[33]	Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination.1252
1199	52.43	In <i>IEEE Conference on Computer Vision and Pattern Recognition</i> , 2018. 2
1200	[34]	Zhisheng Xiao, Qing Yan, and Yali Amit. Do we Really Need to Learn Representations from In-domain Data for Outlier Detection? 1254
1201	[25]	May 2021. 3, 7 Dishard Zhang Dhillin Isala and Alaysi A Efrag. Calarful image calarization. In European Conference on Computer Vision, 2016
1202	[33]	2
1203	[36]	1257 Bo Zong, Oi Song, Martin Rengiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen, Deen Autoencoding
1204	[50]	Gaussian Mixture Model for Unsupervised Anomaly Detection Feb 2018 9
1205		1259
1206		1260
1207		1261
1208		1262
1209		1263
1210		1264
1211		1265
1212		1266
1213		1267
1214		1268
1215		1269
1216		1270
1217		1271
1218		1272
1219		1273
1220		1274
1221		1275
1222		1276
1223		1277
1224		1278
1225		1279
1226		1280
1227		1281
1228		1282
1229		1283
1230		1284
1231		1285
1232		1286
1233		1287
1234		1288
1235		1289
1236		1290
1237		1291
1238		1292
1239		1293
1240		1294
1241		1295