
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search
(Supplementary Material)

S1. Implementation Details

S1.1. Identify the Optimal Design Point

With regards to which layers to compress, for ResNet-
18, we target every 3×3 convolutional layer except the first
layer. For MobileNetV2 and EfficientNet-B0, we compress
all the point-wise convolutions.

To reduce the searching cost, the design space is pruned
by FLOPs for all three models, where the step size of the
grid search is 5%. When pruning by accuracy, 500 im-
ages are randomly selected from the validation set for the
proxy task, and these images are fixed throughout the ex-
periment. This technique is only used on MobileNetV2 and
EfficientNet-B0, and the accuracy degradation tolerance of
the proxy task τproxy is set as 5pp of top-1 accuracy.

During NAS, the sampling parameters θi are
learned using Adam with lr=0.01, betas=(0.9,0.999),
weight decay=0.0005. The learning process takes 100
epochs and 50 epochs respectively for searching the first
and the second branch. The Gumbel-Softmax temperature
is initialised as 5, and decays by 0.965 for every epoch.

S1.2. Iterative Searching Method

The proposal of the iterative searching method aims to
reduce the searching cost by focusing on one branch of the
building block at each time. Since this method identifies the
optimal configuration of each branch in a greedy way, it is
at the risk of not finding the global optimal solution. Em-
pirically, we found that relaxing the configuration identified
for the first branch can help us to reach better design points.

As Algorithm S.1 shows, for the first branch, we choose
to relax its configuration from r0i to r0,∗i by removing a pro-
portion of ranks ∆ri. The intuition behind is that the re-
laxation will give the second iteration of NAS more space
to explore, probably reducing the chance of being stuck at
local optimum. In our experiment, we choose the value of
∆ri so that the corresponding FLOPs difference between
using r0i and r0,∗i is equal to 20% FLOPs of the original
layer.

S1.3. Generate the Synthetic Dataset

Each random initialised image is optimised with Adam
for 500 iterations. The learning rate is initialised at 0.5, 0.25
and 0.5 for ResNet-18, MobileNetV2 and EfficientNet-B0
respectively, and it is scheduled to decay by 0.1 as long
as the loss stopped improving for 100 iterations. α in lbn
is set to 1 for ResNet-18 and MobileNetV2, and 100 for
EfficientNet-B0. The scaling factor 1

fi
is introduced on

Algorithm S.1 Iterative Searching (Relaxed Configuration)
1: Ei,0 = Wi

2: for b ∈ {0, 1} do
3: identify optimal Fb(Ŵ

1,b
i , Ŵ 0,b

i ) to approximate Ei,b,
with the rank of rbi

4: if b==0 then
5: relax the rank rb,∗i = rbi - ∆ri, and update the low-rank

weight tensors accordingly
6: end if
7: Ei,b+1 = Ei,b − Fb(Ŵ

1,b
i , Ŵ 0,b

i )
8: end for

MobileNetV2 and EfficientNet-B0 only, but not ResNet-18.
The batch size is set to 32 for all three models.

Compared with ZeroQ, Our objective function lbn differs
in that we averaged the loss for each batch normalisation
layer by scaling it with the number of channels fi. We found
taking this average is important for those compact models
which use MBBlock, such as MobileNetV2 and Efficient-
Net to produce high-quality synthetic images. The intuition
behind this change is that the number of channels in these
compact models varies a lot between layers because of the
inverted residual structure. Therefore, averaging by fi helps
balancing the contribution of each batch normalisation layer
towards the total loss.

In terms of the storage of the synthetic dataset, the float-
ing point format leads to better knowledge distillation re-
sults the quantised RGB format. As such, a synthetic dataset
containing 25k images requires about 14 GB disk space.

S1.4. Fine-tune the Low-rank Model

For all the experiment set-ups: post-training, few-sample
training and full training, our framework uses SGD for fine-
tuning, with momentum and weight decay set to 0.9 and
0.0001 respectively. The learning rate is initialised to 0.001
and set to decay by 0.1, as long as validation accuracy has
not been improved for the last 10 epochs. The fine-tuning
stops once the learning rate is below 0.0001.

S1.5. Measure Performance

S1.5.1 FLOPs and Parameters Measurement

The number of FLOPs and parameters in a given model
is calculated using the open-source library thop1, and the
number of FLOPs is defined as the twice of Multiply-
Accumulate (MAC).

1https://github.com/Lyken17/pytorch-OpCounter
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S1.5.2 Latency Measurement

The reported CPU latency is measured on a Pixel 4 phone
using the Tensorflow Lite 2.1 native benchmark binary 2.
The CNN model runs on a single thread using one of the
Cortex-A76 core, and the reported result is the average of
50 runs.

S2. Reproduce Previous Work
When comparing our SVD-NAS with existing works, for

few-sample training and full training set-ups, we presented
the data reported in those papers. However, for the post-
training set-up, those relevant works did not disclose the
precise data. Therfore, we reproduce the following works to
generate the numbers in the table of post-training compar-
ison. The code for reproducing these works has also been
released.

S2.1. ALDS

The authors of ALDS demonstrated the post-training re-
sults, referred to as “Compress-only” in their paper, in fig-
ures without providing the actual performance numbers.
Therefore, we use their official code 3 to rerun the post-
training tests. For fair comparison, we altered their way
of FLOPs and parameters measurement to align with ours,
as their official code only counts the FLOPs in the con-
volutional and fully-connected layers rather than the entire
model, which would overestimate the compression ratio.

S2.2. LR-S2

The authors of LR-S2 proposed a single decomposition
scheme and a rank selection method, which is:

min
rk

(

K∑
k=1

(λCk(rk) +
µ

2

Rk∑
i=rk+1

s2k,i)). (S.1)

K denotes the number of layers in the model, and rk de-
notes the decomposition rank in the kth layer. In addition,
Ck(rk) denotes the per-layer computation cost in FLOPs
and sk,i denotes the ith largest singular value in the kth

layer. λ and µ are two hyperparameters.
However, since the authors of LR-S2 did not consider

the data-limited setting, they chose to use (S.1) as a regu-
larisation term and solve it by gradient descent. Instead, we
solved the above optimisation problem without the need of
data by identifying the minimal rank rk which makes the
following inequality hold true for each layer.

λCk(rk + 1)− λCk(rk)−
µ

2
s2k,rk+1 ≥ 0 (S.2)

2https://www.tensorflow.org/lite/performance/measurement
3https://github.com/lucaslie/torchprune

S2.3. F-Group

F-Group is a work which manually picked the decompo-
sition scheme as well as the decomposition rank. We repro-
duced the exact same decomposition configuration shown
in the paper and collected the model accuracy without any
fine-tuning. We observed this hard-crafted method heavily
degrades the model accuracy to almost zero top-1 accuracy.

S3. Additional Results

S3.1. Searching Time

In our framework, the procedure of NAS is completed
on a single RTX 2080 Ti or a GTX 1080 Ti GPU. Table S1
summarises the averaged searching time which mainly in-
cludes deriving the weights of SVD building blocks, prun-
ing the design space, and the training loop of the sampling
parameters.

Table S1: Averaged execution time of NAS.

Model first iteration second iteration
GPU hours GPU hours

ResNet-18 2080 8.66 1080 4.66
MobileNetV2 1080 10.03 1080 3.07
EfficientNet-B0 1080 14.67 1080 3.07

S3.2. Overfitting in the Search

Due to the data-limited problem setting that the access
to training data is difficult, the sampling parameters θi are
learned on the validation set. To understand the effect of
overfitting, Table S2 compares the performance of the iden-
tified design point when searching with the whole validation
set and 1% of it. The results show that, under the similar
compression ratio, the accuracy difference is no more than
1.07pp.

Table S2: Train the sampling parameters θi using the whole
(50k samples) and 1% (500 samples) of ImageNet valida-
tion set. Experiment set-up is B1-SD25k.

Model Val Size
∆ FLOPs

(%)
∆ Params

(%)
∆ Top-1

(pp)
∆ Top-5

(pp)

ResNet-18 50k -59.17 -66.77 -5.83 -3.39
500 -58.96 -67.57 -6.90 -3.95

MobileNetV2 50k -12.54 -9.00 -9.99 -6.11
500 -12.37 -8.73 -10.79 -6.53

EfficientNet-B0 50k -26.53 -17.69 -15.35 -8.99
500 -26.28 -17.53 -13.53 -7.64
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Figure S1: Schematics of the obtained low-rank models. The coloured rectangles represent SVD building blocks and they are
clustered into three types (red, yellow, green) based on the value of their design parameters. Top: ResNet-18, single-branch
design, obtained by the setting that β=48, γ=[0.3,0.7]. Middle: MobileNetV2, single-branch design, the setting is β=88,
γ=[0.6,0.95], τproxy=5. Bottom: EfficientNet-B0, two-branch design, the setting is β=48, γ=[0.5,0.95], τproxy=5.

S3.3. Visualise Low-rank Models

In order to visualise the optimal design parameters iden-
tified by the gradient-descent NAS, we sketched several ex-
amples of the obtained low-rank models in Fig. S1. As
our framework targets the compression of every 3× 3 con-
volutions except the first layer in ResNet-18, and every
point-wise convolutions in MobileNetV2 and EfficientNet-
B0, only these targeted layers are demonstrated while oth-
ers are hidden from the schematics. These visualised results
demonstrate the advantage of our framework over the pre-
vious work that we have a larger design space and we can
also efficiently explore that space.

S3.4. Complete Post-training Results

Table S3 provides the complete post-training results of
SVD-NAS, including metrics of interest and the corre-
sponding hyperparameters to obtain these designs.
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Table S3: Post-training results of SVD-NAS. ∆ F/P denote the FLOPs and parameters reduction in percentage (%), while
∆ Top1/5 denote the accuracy degradation in percentage point (pp). β is the hyperparameter which balances the cross-
entropy term and the computation cost term in the loss function of gradient descent NAS. γ and τproxy control the level of
design space pruning. When pruning by FLOPs, γ denotes the values of the grid search, with a default step size at 0.05;
for example, γ=[0.3,0.7] means “0.3, 0.35, 0.4 ... 0.7”. When pruning by accuracy, τproxy denotes the tolerance of top-1
accuracy degradation in the units of pp.

ResNet-18 β=48, γ=[0.3,0.7] β=48, γ=[0.4,0.8] β=32, γ=[0.4,0.8]
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-59.17/-66.77

-17.58/-12.79
-53.64/-59.79

-10.55/-7.22
-50.39/-58.79

-6.75/-4.41
B1-SD1k -6.72/-4.14 -4.50/-2.48 -3.75/-2.10
B1-SD25k -5.83/-3.39 -3.68/-2.03 -3.05/-1.62
B2 -62.53/-72.61 -20.73/-18.88 -60.74/-69.21 -16.20/-11.12 -58.60/-68.05 -13.35/-9.14
B2-SD25k -8.98/-5.28 -6.98/-4.07 -5.85/-3.34

ResNet-18 β=16, γ=[0.5,0.9] β=4, γ=[0.5,0.9] β=2, γ=[0.5,0.9]
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-38.91/-43.71

-3.32/-2.5
-25.50/-36.70

-1.12/-0.84
-17.30/-27.19

-0.64/-0.24
B1-SD1k -1.68/-0.85 -0.83/-0.36 -0.43/-0.21
B1-SD25k -1.16/-0.61 -0.62/-0.27 -0.44/-0.09
B2 -45.16/-53.64 -4.20/-2.52 -28.86/-42.19 -1.38/-0.75 -13.98/-26.94 -0.67/-0.30
B2-SD25k -2.13/-0.95 -1.00/-0.38 -0.59/-0.18

MobileNetV2 β=88, γ=[0.6,0.95], τproxy=5 β=80, γ=[0.6,0.95], τproxy=5 β=64, γ=[0.6,0.95], τproxy=5
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-14.17/-10.66

-19.82/-13.15
-12.54/-9.00

-15.09/-7.79
-7.73/-6.70

-7.66/-4.46
B1-SD1k -14.41/-9.00 -11.63/-7.17 -5.51/-3.10
B1-SD25k -13.15/-8.34 -9.99/-6.11 -4.91/-2.88
B2 -16.13/-13.24 -23.16/-15.75 -13.64/-9.70 -17.59/-11.39 -8.09/-6.60 -8.06/-4.70
B2-SD25k -17.78/-11.35 -11.60/-6.92 -5.36/-2.97

MobileNetV2 β=48, γ=[0.6,0.95], τproxy=5 β=32, γ=[0.6,0.95], τproxy=5
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-6.53/-5.82

-5.26/-3.08
-1.92/-2.74

-1.90/-0.86
B1-SD1k -4.41/-2.52 -1.89/-0.84
B1-SD25k -4.22/-2.35 -1.76/-0.73
B2 -6.60/-5.71 -4.69/-2.72 -2.20/-2.34 -1.62/-0.84
B2-SD25k -4.10/-2.21 -1.48/-0.78

EfficientNet-B0 β=88, γ=[0.5,0.95], τproxy=5 β=80, γ=[0.5,0.95], τproxy=5 β=64, γ=[0.5,0.95], τproxy=5
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-26.53/-17.69

-24.65/-15.92
-22.85/-16.06

-13.15/-7.45
-21.04/-15.60

-10.77/-5.95
B1-SD1k -16.36/-9.62 -9.68/-5.18 -7.48/-3.90
B1-SD25k -15.35/-8.99 -9.45/-5.08 -7.40/-3.78
B2 -29.83/-20.60 -23.47/-15.02 -28.52/-20.38 -18.65/-11.20 -25.72/-18.86 -13.96/-8.10
B2-SD25k -16.70/-10.01 -13.87/-7.87 -10.45/-5.69

EfficientNet-B0 β=48, γ=[0.5,0.95], τproxy=5 β=32, γ=[0.5,0.95], τproxy=5 β=16, γ=[0.5,0.95], τproxy=5
∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5 ∆ F/P ∆ Top1/5

B1
-18.10/-13.23

-6.99/-3.79
-15.32/-12.08

-5.98/-3.05
-8.97/-6.11

-2.98/-1.52
B1-SD1k -5.60/-2.76 -4.65/-2.36 -2.09/-0.98
B1-SD25k -5.42/-2.79 -4.56/-2.37 -1.99/-0.87
B2 -22.17/-16.41 -10.11/-5.49 -15.95/-12.85 -6.03/-3.16 -8.85/-6.19 -2.91/-1.54
B2-SD25k -7.67/-4.06 -4.46/-2.32 -1.86/-0.91
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