
Supplemental:
Scaling Neural Face Synthesis to High FPS and Low Latency by Neural Caching

Frank Yu

frankyu@cs.ubc.ca

Sid Fels
University of British Columbia (UBC)

ssfels@ece.ubc.ca

Helge Rhodin

rhodin@cs.ubc.ca

This document supports the main paper, including how
processing is parallelized over multiple GPUs, limitations
of the used head reconstruction algorithm, and additional
ablation studies.

1. Implementation details
Meshes are generated using the forward function of the

FLAME model implemented in python [3]. UV maps are
generated by rendering the FLAME head model using the
PyTorch3D rasterizer, which implements rasterization on
the GPU sing custom cuda kernels but is not as fast as clas-
sical rasterization. The explicit warp is implemented using
the pytorch grid sample function, which is the same as used
by [1] for their explicit warp.

Generating Novel Views Our method relies on both the
processed UV maps, initialized with the 3D mesh estimated
by DECA [2]. Therefore, to generate novel views for our
method we require to modify these parameters. In our
tests, we found that the best generalization to novel views
is obtained by rotating the vertices outputed by the FLAME
model, as modifying the joint angles in FLAME model to
extreme poses may lead to parameter ranges not seen during
training.

Multithreading Library Our multi-gpu operation
modes are implemented using the PyTorch multi-
threading library and two threads. For synchroniza-
tion and communication between threads we use the
torch.multiprocessing.mp.Queue ques: one input queue for
each thread (two for two GPUs), one image output que,
and one que to signal completion of caching. Listing 1
provides pseudocode for how caching and warping threads
are orchestrated from the main thread, making sure that
the output images arrive in sequence and that the caching
completes before warping on the same worker while
also ensuring that the parallel workers are independent
otherwise for maximal performance. For simplicity, the

Figure 1: Limitations of Head Reconstruction We can
see that at extreme angles and glasses present a problem
to the capture algorithm and produces inaccurate UV maps
and parameters.

pseudocode is simplified for 2x GPU and 2x warping for
every caching operation. A different number of GPUs
and warp operations only requires to change the condition
in line 4 and line 8 that distribute caching and warping
operations over worker threads. We will publish our
multithreading code so others can build upon it with their
own neural models.

Algorithm Time Complexity Using the code provided
by pytorch-OpCounter, we measured the FLOPs for both
the generator and warping network which are 364G and
87G FLOPs respectively. This factor of 4x corresponds well
with the 3.2x latency improvement that we reported. Note
that our approach decouples the complexity of the genera-
tor and warp networks, i.e., the warp keeps the same time
complexity when coupled with deeper generators (c.f. ex-
periment with ResNet in ablation study).

2. Limitations of Capture Algorithm
Due to limitations with the DECA approach [2], extreme

head poses and cases when the subject is wearing glasses
are not accurately reconstructed. Figure 1 shows such a
case with glasses and a perpendicular angle to the camera,
leading to a misalignment of model and image around the
mouth, ears, and forehead.

https://github.com/Lyken17/pytorch-OpCounter


Algorithm 1: Parallel Implementation (2x GPUs, 2x warp)

/* Main thread */
1 Queue viewpoint queue[NGPU=2], cache queue, out queue // Queues used for synchronization
2 cache tid← 0 // Pointer to assign worker responsible for caching
3 for t=0; t++; do

Input: viewpoint, expr
4 if t % NUM WARPS == 0 then
5 cache queue.get() // Wait for caching to complete
6 cache tid← (cache tid+1) % NGPU // Switch role of threads

// Post viewpoint to worker and assign caching role
7 (viewpoint, expr, warp=False)→ viewpoint queue[cache tid]

// Post viewpoint to the other worker and assign warping role
8 (viewpoint, expr, warp=True)→ viewpoint queue[(cache tid+1) % NGPU]

// Display output image once available
Output: out queue.get()

/* Worker thread, one for each GPU */
9 do in parallel

10 NeuralCache cache // variable local to each thread
11 (viewpoint, expression, warp)← viewpoint queue.get() // Wait for new input to process
12 if warp = True then
13 image← runWarpNet(viewpoint, expression, cache) // Generate the image
14 image→ out queue // Return output image via queue

15 else
16 mesh← runFaceModel(viewpoint, expression) // Face mesh from expr. parameters
17 cache← runDecoder(viewpoint, expression, mesh) // Cache neural representation
18 ”caching done”→ cache queue // Notify cache completion via queue

C3 C4 C5 L1 ↓ PSNR ↑ SSIM ↑
✓ 0.0261 26.13 0.9048
✓ ✓ 0.0247 26.48 0.9096
✓ ✓ ✓ 0.0246 26.54 0.9102

Table 1: Ablating caching layers for our warping net-
work using the sequential variant (1x warp), showing the
improvement after adding each component on the beard
dataset.

3. Additional Ablation on Caching Layers

In this additional ablation, we sequentially remove the
caching layers (C3, C4, C5) and measure the reconstruction
quality in terms of L1 loss, PSNR, and SSIM. Each con-
figuration was trained on the beard dataset for 50 epochs,
and metrics were computed on the held-out test set. Table 1
shows that adding the C4 cache layer is the most impactful,
but since performance increases after adding all layers, we
include all cache layers in our final configuration.

4. Additional Ablation on the Warp Distance
In the experiments in the main document, we present

the results of our warping network by warping either 1 or
2 frames ahead. This ablation study measures the perfor-
mance drop from warping more frames ahead. Figure 2
shows that the reconstruction quality decreases linearly with
the warp distance on the beard dataset, which was recorded
at 30fps. Please note that this increase of error is expected
as the proposed neural caching and warping is a local ap-
proximation designed for high-fps videos where the warp
distance is small.

References
[1] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and

Qingyuan Li. Fast, accurate and lightweight super-resolution
with neural architecture search. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 59–64.
IEEE, 2021.

[2] Yao Feng, Haiwen Feng, Michael J. Black, and Timo Bolkart.
Learning an animatable detailed 3D face model from in-the-
wild images. volume 40, 2021.

[3] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier
Romero. Learning a model of facial shape and expression



Warp Distance [Frames]

P
S

N
R

25.5

26.0

26.5

27.0

1 2 3 4 5

PSNR vs. Warp Distance

Figure 2: Ablation on warp distance as we increase the
warp distance, or the number of warping operations per
caching operation, the reconstruction quality decreases lin-
early.

from 4d scans. ACM Trans. Graph., 36(6):194–1, 2017.


