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1. Outline
This supplementary material presents additional con-

tent for our paper with the title “LRA&LDRA: Rethink-
ing Residual Predictions for Efficient Shadow Detection
and Removal”. In Section 2, we provide additional de-
tails on our PITSA dataset. In Section 3, we provide addi-
tional results and analyses of experiments on our proposed
LRA&LDRA modules which are presented in the main text.

2. Details on the PITSA Dataset
We first provide additional details on the pipeline used

to generate the PITSA dataset, and then provide detailed
statistics about the PITSA dataset.

2.1. Further Details on Generating Shadow Aug-
mentation

In Section 4 of our manuscript, we provide details on
the shadow superimposition stage of our dataset creation
pipeline, and mention the parameters we alter to approxi-
mate the shadow areas; warmth, hue, saturation and dark-
ness. Below, we further expand the operations we per-
form (i.e. to acquire Idark from Ifree, as mentioned in the
manuscript). We use the following operations to alter the
warmth

IRcool = α×DC(IRfree) + (1− α)× IRfree

IGcool = IGfree

IBcool = α× IC(IBfree) + (1− α)× IBfree

(1)

where × denotes element-wise multiplication, Ifree is a
shadow-free image/patch extracted at stage 1 (shadow-
free patch extraction via shadow detection model) of our
pipeline, superscripts R,G,B denote individual color chan-
nels of the relevant image, α is the weighting factor that
controls the intensity of the cooling effect (randomly sam-
pled from a uniform distribution [0, 0.5)), and DC& IC are

*Equal contribution.

non-linear functions that decrease and increase the intensity
values, as shown in Fig. 1, respectively. For the latter (hue,
saturation and darkness), we first normalize Icool by

IRcool′ = IRcool/255

IGcool′ = IGcool/255

IBcool′ = IBcool/255

(2)

and then calculate
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B
cool′)

∆ = Cmax − Cmin

(3)

We then use Cmax, Cmin and ∆ to convert RGB images to
HSV. We obtain H channel by

Hdark = β ×
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(4)

and S and V channels are obtained by

Sdark = γ ×
{

0 , if Cmax = 0
∆

Cmax
, if Cmax ̸= 0

Vdark = δ × Cmax

(5)

where β, γ, δ are the three parameters controlling the dis-
tance in color shift and the intensity of saturation and dark-
ness changes. For the PITSA dataset, they were randomly
sampled for each triplet from the empirically-determined
ranges [0.8, 1.2], [0, 1] and [0.35, 0.75], respectively. Fi-
nally, we map Hdark, Sdark and Vdark back into the RGB
space, and we randomly apply a further darkening step as
detailed in [6]. The resulting output is named Idark, which



Figure 1. On the left hand side, DC (i.e. red channel mapping) and IC (i.e. blue channel mapping) functions are plotted, which are used
to decrease/increase intensity values in warmth altering phase of our dataset generation pipeline (see eqn. (1)). On the right hand side,
example failure images are shown where the pre-trained shadow detector fails to find all shadows, and as a result, some of our shadow-free
(Ifree) images/patches actually have shadows on them.

is used for final shadow blending operation that creates
Ishadow (please see eqn. 9 in the manuscript).

As mentioned in the main manuscript, the primary bot-
tleneck of the pipeline is the accuracy of the shadow detec-
tion model M used for patch extraction. We show several
failure cases in Fig. 1. Inevitably, there are some night-
time and low-light images in our dataset; such images are
going to add noise to our data. Furthermore, the failure
of the pretrained shadow detection model leads to shadow-
contaminated shadow-free images. Manual vetting, or re-
peated patch filtering via M is a desirable way forward,
at the expense of additional cost. However, our results
(shown in the main manuscript) show that despite this noise,
the PITSA dataset significantly improves the results of our
method and existing methods. Finally, any improvement
in M is likely to directly translate to the quality of the pro-
duced dataset, which shows the value our dataset generation
pipeline brings.

2.2. Statistics of the PITSA

Image variety. Example (shadow) images from our
PITSA dataset are shown in Fig. 2; PITSA has significantly
more variety in scenes compared to existing datasets such
as ISTD and SRD. ISTD and SRD, since they are real-life
datasets where pairs or triplets are generated under con-
trolled environments, primarily contain ground-directed im-
ages taken with low-pitch camera angles (i.e. pavement,
grass, etc.) with relatively fixed distance to the subject. Our
PITSA dataset, on the other hand, exploits images taken
with any camera angle or position, and significantly scales
the scene variety (∼ 10 times).

We quantitatively compare the image variety of ISTD,
SRD and PITSA datasets; we first feed all three datasets
to a ResNet model pre-trained on the ImageNet dataset [3],
and collect the (top-5) predictions of the model for each im-
age in the training split of each dataset. Afterwards, we

simply calculate the histograms of these predictions and vi-
sualize them in heatmaps. Middle row of Fig. 3 shows these
(40×25) heatmaps for each dataset, where each pixel rep-
resents a class, color black indicates no predictions for the
class and brighter colors indicate more frequent predictions
of the class. It is visible that ISTD is quite limited in variety
whereas SRD is a bit better. The last heatmap shows that
our PITSA dataset has significantly more variety in scenes.

We used the training splits for each dataset when cal-
culating the heatmaps (of Fig.3), and PITSA is significantly
larger than the others in terms of image quantity. For a fairer
comparison, we take the ten most frequent predictions made
by the pre-trained ResNet model for each dataset, obtain the
number of samples of each prediction, and calculate their
ratio to the number of images in the training split. The re-
sults are shown in Fig. 4 for all three datasets. The three
most frequent predictions of ISTD make up around 30% of
the entire training set, and the first two are doormat and
manhole classes, both referring to a certain viewpoint (i.e.
looking at the ground). SRD is slightly better, where the
three most frequent predictions account for around 14% of
the entire training set. Please note that doormat and man-
hole classes are in top three for SRD like ISTD, which is an-
other proof of the limited variety. PITSA, on the other hand,
shows that its variety does not solely come from the large
number of images it has; the three most frequent predic-
tions are monastery, palace and lakeside classes, showing
the variety in scenery. Furthermore, the three most frequent
predictions make up a mere 5% of the entire training set.
This shows that PITSA does have a better variety, but also
it has a more balanced representation of classes.

Statistics of shadow regions on images. In addition to its
scene diversity, PITSA dataset also shines with its shadow
distribution, both in terms of size and location. The top
row of Fig.3 shows the histogram of shadow mask sizes as
a percentage of the original image sizes, for ISTD, SRD



Figure 2. Example images from the PITSA dataset (shadow image Ishadow examples). Note the diversity of images, as well as the shadow
mask shapes.

and PITSA datasets. PITSA shows a more uniform distri-
bution in the shadow sizes, whereas SRD and ISTD have
distinct peaks around 10% and 20%, respectively. Further-
more, PITSA has a better distribution of shadows with large
mask sizes (over 50%).

In addition to the shadow size, another important infor-
mation is the location of the shadows observed in images.
The bottom row of Fig. 3 shows the location distribution of
shadows in images, where brighter areas correspond to ar-
eas with greater likelihood of having shadows. ISTD and
SRD have limited variety in shadow locations, where SRD
is slightly more diverse. PITSA, on the other hand, has
a significantly larger variety in shadow locations, showing
that PITSA images tend to have shadows in any location of
an image.
Comparison with other datasets. We compare PITSA
with the (previous) largest removal synthetic dataset in
terms of pretraining performance; we pretrain our best
model either on PITSA or on [6], and then finetune on
ISTD. Table 1 shows PITSA provides a performance boost
across all metrics, especially visible in detection BER and

Pre-train on: [6] PITSA
S 6.2 5.6

NS 2.4 2.4
All 3.0 2.9

BER 1.70 1.47
Table 1. Comparison with [6] in terms of pretraining performance.
Models are trained on either [6] or PITSA, and then finetuned on
ISTD; results shown are from A-ISTD test set. PITSA provides a
bigger boost to performance than [6].

shadow-region MAE.

2.3. The hypothesis behind PITSA

From another perspective, we can think of PITSA as
a dataset for a task more abstract than shadow detec-
tion&removal, which is the detection and removal of altered
colors of image regions. This task definition differs from
shadow detection and removal; i) altered color is not neces-
sarily a shadow, but can be of any color, ii) alteration-free
image (i.e. input image) may have shadows (i.e. shadow-
free images should not have shadows) and iii) altered color
regions are not limited with the realism of shadows (i.e. we



Figure 3. Statistics for the ISTD (first column), SRD (second column) and PITSA datasets (third column). First row shows the distribution
of mask fill percentage (i.e. percentage of regions occupied by shadow on images) against number of samples (i.e., percentage of the overall
number of samples). Second row shows the (histogram) heatmaps for the predictions made by a ResNet model pre-trained on ImageNet
[3], when training samples of each dataset are fed to the network. Each class is represented by a pixel (40×25 heatmap for all 1K classes),
where black color indicates no predictions for that class and brighter colors indicate more frequent predictions. The last row shows the
shadow location distribution per pixel, where brighter values mean a greater likelihood of shadows being present on that pixel. Note that
in each row, the PITSA dataset shows favourable characteristics; a balanced shadow size (row 1), a greater scene diversity (row 2) and a
greater shadow location diversity (row 3).

can alter the color of a clear sky, whereas we can not cast
shadows on a clear sky). The latter two lets us relax two im-
portant requirements; i) shadow/alteration-free image pu-
rity (i.e. absolutely no shadows in shadow-free image) and
shadow/alteration mask realism. With these relaxations,
we can use i) more shadow/alteration-free images and ii)
a more diverse set of shadow/alteration masks. Thanks to
this, PITSA can be scaled even further, and provides a boost
to nearly all shadow removal/detection methods when used
in pretraining. The potential downside of PITSA is that we
do not recommend its use as a benchmark dataset for evalu-

ation, as above points make it suboptimal for the more con-
crete/constrained task of shadow detection/removal.

3. Details on the LRA&LDRA

In this section we present additional details on experi-
ments provided in the main manuscript.

3.1. Why [4] for LRA&LDRA?

As mentioned in Section 3.2 of the main text, we choose
[4] to implement both LRA&LDRA modules due to its



Figure 4. Ten most frequent class predictions provided by a ResNet model pre-trained on ImageNet [3], against the number of samples
(per class) as a ratio of the overall number of training samples, for ISTD (left), SRD (middle) and PITSA (right) datasets. Note that the
predicted labels show greater diversity for the PITSA dataset. Furthermore, the ratios of class predictions are significantly lower for PITSA,
showing that the PITSA dataset is not biased towards a specific scene category (i.e. ground images for ISTD and SRD). Best viewed when
zoomed in.
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Figure 5. Diagram of [4] used to implement LRA&LDRA.

minimal overhead and strong spatial/cross-channel compo-
nents.We now explain our choice in more detail.

Spatial components. [4] avoids global-pooling by factor-
izing it into two 1D feature encoding operations, and do-
ing so preserves spatial/positional information better than
alternatives. This is important in our use case as we want
LRA&LDRA to guide R to focus on shadow regions, and
also filter out non-shadow region prediction should R fail
to do so (see such failure occurs for vanilla residual predic-
tions in Figure 4, main text).

Cross-channel relations. [4], building on previous at-
tention methods like [12], models inter-channel infor-
mation. This is especially important for blending and
color-correction; recall from main text that LRA pre-
pares/transforms the input for blending and LDRA per-
forms color-correction. Since LRA&LDRA operate on im-
ages, the ability of choosing the most important color chan-
nel for such transforms is important. This is realized thanks
to the strong inter-channel information modeling of [4].

3.2. Detailed ablations on LRA&LDRA.

Having justified the addition of LRA&LDRA in Table 2
main text, we now present the full set of ablation experi-
ments we conducted when designing LRA&LDRA. The re-
sults are shown in Table 2.

We note that table 2 is an extended version of Table 2
in main text. This version also shows that [4] is a bet-
ter option than [12] (spatial attention) for implementing
LRA&LDRA, which further justifies our choice. Further-
more, we also show that alternatives to the additive residual
formulation, such as multiplication and convolution layer,
do not work as well (visible in shadow region MAE) as the
additive residual formulation we adopt in LRA&LDRA.

3.3. Mask Generation for the SRD

Since we present a joint solution for detection and re-
moval, we also leverage mask information during evalua-
tion. The mask information is available for ISTD but not
for SRD dataset. To this end, we generate masks for SRD
dataset to be able to evaluate the shadow removal model R,
which requires a mask input. This lets us evaluate the per-
formance of the removal model in more detail; shadow and
non-shadow accuracy can be evaluated separately.

During mask generation, in addition to adaptively thresh-
olding the difference between shadow/shadow-free images
[2], we manually inspect the masks and either i) automat-
ically correct the ones with minor errors or ii) manually
annotate from scratch the ones with incorrect masks. For
the former, we perform mask filling via flood fill and noise
reduction via median filtering, while we use tools for pixel-
level annotation for the latter.

3.4. Additional Details on the Training Phase

Visualization of our pipeline. Our overall pipeline is
shown in Fig. 6. Both networks are trained with ℓ1 loss
using their respective ground-truth labels, but the detection
network also leverages the gradients gR of the removal net-
work with respect to the cost of the removal network costR.
Training duration. We note that the training takes around
a day for full 2000 epochs for ISTD and slightly more for



Ablation on different (LRA, LDRA) Ablation on eqn (4
B (1,1) (1-Im,Im) ([4],1) (1,[4]) ([12],1) (1,[12]) ([12],[12]) ([4],[4]) ([4],[4])† ([4],[4])‡

S ↓ 7.94 8.69 7.32 7.73 8.45 8.27 7.91 8.25 7.54 9.80 8.51
NS ↓ 3.20 2.66 2.97 2.71 2.55 2.73 2.68 2.65 2.55 2.77 2.67
All ↓ 3.86 3.56 3.54 3.45 3.40 3.55 3.50 3.47 3.29 3.80 3.52

BER ↓ 2.84 1.91 1.81 1.69 1.85 1.77 2.30 1.78 1.56 1.96 1.73
Table 2. Accuracy (MAE and BER) obtained for D and R, equipped with various (LRA, LDRA). Im denotes the Imask. Results with †
and ‡ use multiplication and convolution instead of the summation operator in eqn. (4). The baseline B formulates R with eqn.(2). S, NS
and All stand for shadow, non-shadow and all regions, respectively. This table is an extended version of Table 2 in main text.

𝐼𝑠ℎ𝑎𝑑𝑜𝑤

𝐼𝑓𝑟𝑒𝑒

𝐼𝑚𝑎𝑠𝑘 − 𝑔𝑡

Pretrained
MobilenetV2

Decoder 
Layers

𝑐𝑜𝑠𝑡𝐷

𝐶𝑜𝑛𝑐𝑎𝑡

𝑐𝑜𝑠𝑡𝑅

𝑔𝑅

Pretrained
MobilenetV2

Decoder 
Layers

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

Avg Pool H Avg Pool W

Concat

Conv2d + BN + ReLU

𝑥𝑖𝑛

Conv2d + Sigmoid Conv2d + Sigmoid

Split

Height Features Width Features

𝑥𝑜𝑢𝑡

𝐿𝑅𝐴&𝐿𝐷𝑅𝐴

𝐿𝐷𝑅𝐴

𝐿𝑅𝐴

𝐿𝐷𝑅𝐴𝑜𝑢𝑡

𝐿𝑅𝐴𝑜𝑢𝑡

𝑅𝑜𝑢𝑡

𝑔𝑅

𝑔𝐷

𝐼𝑚𝑎𝑠𝑘

𝐼𝑜𝑢𝑡

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

Figure 6. Visualization of our pipeline for joint shadow detection and removal, as used in the main manuscript. We use the same en-
coder/decoder architecture [13] for detection and removal networks. The removal network is trained with ℓ1 loss (costR), whereas detec-
tion is trained with ℓ1 loss (costD) and the gradients gR of the removal network with respect to costR. Best viewed when zoomed in.

SRD datasets, although, due to early stopping, we generally
stop the training before 2000 epochs. Training a model for
an epoch on the PITSA dataset with a batch size of 16 on a
single GPU, takes around an hour. Note that the timings are
based on an RTX 3090 GPU.

3.5. Additional Analyses

In Tables 6 and 7 of the main manuscript, we show that
we manage to outperform competing removal methods in
various metrics. However, many of them [7, 8] use pre-
trained detection networks to produce their masks (during
evaluation phase), whereas we train (and evaluate) our own
detection network jointly, as stated in our manuscript. We
note that our detection network reaches state-of-the-art ac-
curacy on ISTD, therefore, it is better than the detection
methods used by other removal methods. This leads us to
the following question: are our improvements in shadow
removal related to the improvements in shadow detection?
We provide answers to this question in two different ways.

First, we look back at the main manuscript. In Table 4,
the last three columns show our ablation on existing meth-
ods, and their change when we plug LRA&LDRA into these

Method Baseline LRA&LDRA
S 7.3 6.8

NS 2.7 2.3
All 3.3 3.0

Table 3. Accuracy of shadow removal models on the ISTD dataset.
Baseline denotes the baseline method (which is described in eqn.
(2) in the main manuscript. Both methods are trained without a de-
tection network; only removal networks are trained with ground-
truth masks as the input mask during training and evaluation.
methods. For all three methods we have tested, we see con-
sistent improvements in shadow removal accuracy in all re-
gions. For [10], the improvement in removal is more pro-
nounced compared to [7, 8], since [10] includes a detection
network as well, and it improves considerably due to our
LRA&LDRA. However, two removal-only methods [7, 8]
still improve with the introduction of LRA&LDRA, espe-
cially in shadow regions.

Second, we train a baseline without LRA&LDRA (for-
mulated as eqn. (2) in the main manuscript) without a de-
tection network, where ground-truth masks are used as in-
put to the removal network. We compare this with our
LRA&LDRA without a detection network, again where
ground-truth masks are used as input to the removal net-
work. Table 3 shows that the improvements brought by



Figure 7. Visualizations of what LRA and LDRA attend on an input image. From left to right, input image, LDRA output and LRA
output are shown. Brighter areas show the areas attended by our LRA and LRDA modules. Note that LDRA primarily performs spatial
attention, whereas LRA does channel-wise transformations. The bottom figures show a failure case, where LRA does unnecessary spatial
transformation and results into an inaccurate result.
LRA&LDRA are not only due to the improvements in
the detection network accuracy, since both networks use
ground-truth masks in Table 3.

3.6. Visualization of LRA&LDRA

Fig. 7 visualizes the locations overlaid on input images
to which LRA&LDRA pay more attention. We first re-
call from Section 5.3 of main text several key points; i)
LRA&LDRA jointly guide the removal network to pro-

duce localized (i.e. only on shadow regions) outputs, ii)
LDRA takes in the output of the removal network, and
refines/color-corrects it for the final blending, and iii) LRA
takes in the input image and performs primarily channel-
wise transformations to prepare the input for the final blend-
ing with the output of the LDRA.

The images in Fig. 7 show that LDRA attends on shadow
regions, but not in a tight manner; the regions around the



Input                      BDRAR [14]               DSD [13]                   MTMT [1]                 FDRNet [15]                Ours  *                    GT             

Figure 8. Qualitative comparison of LRA&LDRA and other shadow detection methods [16, 15, 14, 1]. Our model is pre-trained on the
PITSA dataset. Note the several cases where our masks are not distracted by other dark (not shadow) regions, resulting into fewer false
positives (rows 1, 3, 4 and 6). Please also note the sharp details (i.e. bright areas in between the shadow mask in row 5) successfully
recovered by our method in rows 2 and 5.

shadow region are also attended. We believe that this is
caused by the fact that our LRA&LDRA implementations
are lightweight; for a tighter attention operation, a higher
capacity model can be a better alternative. However, the
current implementation is helpful for the final blending;
this slightly larger attention region essentially acts like a
dilation so the boundary of shadow region can be better
combined/blended with the non-shadow regions. The op-
eration of LRA is less intuitive compared to the operation
of LDRA, since LRA primarily performs a channel-wise
attention, rather than a spatial one. This channel-wise at-
tention helps the blending operation with the output of the
LDRA. However, please note that in the first two images
(rows 1 and 2), some non-shadow areas are highlighted as
well, especially along the borders of the shadow areas. This
verifies the last point we made above; LRA helps prepare
the input for blending, primarily via channel-wise transfor-
mations but also via some spatial transformations. The last
image (row 3) shows a failure case, where the LDRA does a
sufficient job, but LRA performs unnecessary spatial trans-

formations, providing a sub-optimal result.

3.7. Qualitative Results for Shadow Detection

We provide additional qualitative results using our de-
tection network (pre-trained on the PITSA dataset) for the
ISTD dataset, and compare it with several state-of-the-art
methods in Fig. 8. Our detection network outperforms other
methods qualitatively as well; note that for various images,
our method successfully avoids false positives (rows 1, 3,
4 and 6). Furthermore, our method is capable of recover-
ing sharp details in complex shadow formations, such as
the small bright spot in between the neck and the arm of
the person in second row and the bright spots between the
leaves in the fifth row. This shows that LRA&LDRA, in
addition to its good accuracy in shadow removal, is also a
strong performer in shadow detection despite a simple and
compact network design.



Figure 9. Zero-shot evaluation for detection and removal. (Input-detection-removal) on SOBA [11] and SBU [9] not used in training.

3.8. Weakly Supervised Shadow Detection

We explained in Section 3.3 of the main text that
LRA&LDRA improves shadow detection results, when gra-
dients GR of the removal model R is backpropagated to the
detection model D. The results in Table 5 main text rows
1&2 main text already verified this claim.

Here, we take a step towards weakly supervised shadow
detection and ask this question; what would happen if we
trained D without ground-truth masks, and only with the
gradients GR of removal model R? In other words, we do
not detach D from R, and only use removal supervision (i.e.
weak supervision).

Table 4 shows that whole image reconstruction B pro-
vides no useful signal to D; detection accuracy is random
(50 BER). With LRA&LDRA using Imask or LRA&LDRA
provide useful information to model D, and detection accu-
racy is significantly improved (17 BER) compared to B (see
images in Figure 2 main text). Note that these results are
inferior to the D trained fully-supervised, but they act as
further proof that LRA&LDRA help improve D.

Ablation on WSL
B WSL (1-Im,Im) WSL LL WSL

BER ↓ 50.63 18.88 17.26
Table 4. Weakly-supervised detection results, where no ground-
truth mask supervision is provided to D, and it is trained indirectly
with removal supervision. B is the baseline methods implementing
eqn. (2) in main text, and Im is the mask predicted by D. LL
indicates LRA&LDRA.

3.9. Further Discussions

Zero-shot performance. We show several qualitative re-
sults on unseen distributions; results are shown in Figure 9.
The model used to acquire these images are pretrained on
PITSA; the results show strong detection and removal per-
formance, verifying the effectiveness of PITSA pretraining
and LRA&LDRA formulation.
Why not just..copy-paste (CP) the non-shadow region?
We continue our discussion on LRA&LDRA versus sim-
ple copy-pasting. As shown in the main text, LRA&LDRA
has key advantages over simply copy-pasting non-shadow
regions of input to the output, such as robustness to mi-
nor mask errors and ability to perform blending/color-
correction . We visualize such cases in Figure 10.
The importance of non-shadow regions. LRA and LDRA



Figure 10. Advantages of LRA&LDRA over simply copy-pasting. (Rows 1-2): Copy-paste (3rd col.) with the blending artefacts (red
arrows), which are addressed by our method (4th col.). (Rows 3-4): Copy-paste where mask errors (shown in red over masks) cause
artefacts, which are addressed by our method.

improve overall shadow removal accuracy, but also give a
solution to avoid focusing on non-shadow regions. This is
important because in removal datasets (and real-life scenar-
ios), shadow regions are generally smaller than non-shadow
regions [5]. Therefore, models without LRA&LDRA can
prioritize non-shadow regions during training, especially
with common regression losses (i.e. ℓ1), which can hinder
shadow region performance. Furthermore, although many
methods rightfully focus on shadow regions, non-shadow
regions are equally important in practice; unsuccessful non-

shadow region reconstructions are equally undesirable.
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