Supplementary Material for

Cooperative Self-Training for Multi-Target
Adaptive Semantic Segmentation

The supplementary material is organized as follows: Sec.
summarizes the notations used. Sec. [Bldescribes the ex-
perimental details of our work. Sec. |C|reports the ablation
study on hyperparameter sensitivity. Sec. [D]lists detailed
quantitative comparisons on various configurations. Finally,
Sec. [E| reports the qualitative visualizations pertaining to
our method.

A. Notation

We summarize in Table[AT]the notation used throughout
the paper:

Notation
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Table Al: Notation used throughout the paper

B. Experimental Details

Datasets. We evaluate our method on two benchmarks pre-
viously used in the literature. These benchmarks are based
on four datasets:

e GTAS5 [[] is collected from the video game GTAS. The
dataset contains 24966 labeled images in total where
the image resolution is 1914 x 1052. The synthetic
nature of this dataset makes it very relevant for domain
adaptation experiments.

e Cityscapes [1]] is a large-scale dataset that has 2975
training and 500 validation labeled images collected
mainly in German cities.

* Mapillary 5] contains 18000 training and 2000 valida-
tion high-resolution images collected from all over the
world. Compared to Cityscapes, this dataset is more
diverse.

e IDD [9] is collected on Indian roads and it has 6993
and 981 finely annotated images in training and vali-
dation sets respectively. IDD is very challenging since
India cities visually differ from the cities depicted in
the other datasets.

Implementation details. In the warm-up stage, we em-
ploy the hyper-parameters as [8] except that we extend the
warm-up stage from 20K to 60K iterations to get better ini-
tial pseudo-labels for the self-training stage. In the second
stage, we use Stochastic Gradient Descent optimizer with
learning rate 1.0 x 10~* to train the model for another 60K
iterations. In all the experiments in the 7-classes and 19-
classes settings, we use random crop of size 320 x 160 and
512 x 256 respectively to accelerate the training. In the sec-
ond stage, we use strong data-augmentation and update the
pseudo-labels every 10K iterations.

C. Ablation Study of Hyperparameters

In the final objective of our proposed CoaST, we weigh
all the constituent losses and set other hyperparameters with
a value that equals to 1. This disposes off the need to have
a target validation set, which indeed is not available for any
UDA setting. Nevertheless, below we study the sensitivity
of CoaST with respect to two hyperparameters over ranges
of possible values.

Ratio of Pair-wise Losses. We perform an ablation study
on the weighing hyperparameter \ that weighs the pair-wise
losses: consistency loss L.s and the rectified segmentation
losses E;tly. The weighted training objective of our CoaST,
first introduced in Eqn. ?? of the main paper, is written as:
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From the Fig. @] (left), we can see that, the mloU re-
mains fairly stable over a wide operating window of .
The performance starts to drop only when we increase the
value of \ to large values. This is reasonable because when
A = 10, the L. and the E;tly starts to dominate the other
losses in Eqn[AT] We observe a well-behaved training dy-
namics when we set the value of A to standard value of 1, or
log A = 0.

Temperature. The rectification weight described in the
Eqn. ?? of the main paper is obtained by applying an ex-
ponential operation on the consistency score. To recap, the
exp(.) function is used to bound the KL-divergence consis-
tency score between ]0,1], which otherwise is unbounded.
The rectification weight can be regulated by using a tem-
perature hyperparameter -y, that controls the steepness of
the exp(.) curve. In other words, higher the value of ~,
more quickly the curve goes to zero, and vice-versa. The
rectification weight which is a function of + is given as:

M
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It can be observed from the Fig. [AT] (right) that the per-
formance of CoaST does not vary much while changing the
temperature . Indeed, we see that the average mloU re-
mains in a tight range of 70.5% to 71.3%, even for extreme
values of . Note that we vary the value of v between 0.01
and 10 in our ablation study, whereas we report the loga-
rithmic values of +y in Fig.[AT|on the x-axis for clarity of the
plot.

D. Quantitative Comparison.

D.1. Detailed Results of the Synthetic to Real Set-
tings

In the Tab. ?? of the main paper, we reported the sum-
mary of the performances on all the settings with GTAS

as the source domain. In this section, we report the de-
tailed class-wise results for those settings. The Tab.
and detail the results on the 7-class setting while the
Tab. [A5] detail the results on the 79-class setting. Note that
the detailed results of G2CI are already shown in Tab. ??
and the Tab. ?? of the main paper.

In Tab. and[A4] we can see that our CoaST out-
performs all the baselines and MTKT [8]] in 7-class bench-
mark for most of the classes. These results are in-line with
the summarized results reported in the main paper and con-
firm the consistent gain provided by our CoaST for the ma-
jority of the classes. In Tab.[A5] we show the detailed com-
parison with Individual and MTKT in 19-class benchmark.
Note that, the detailed comparison with scores reported for
every class is not reported in paper introducing CCL [3]] and
ADAS [4]). Since their codes are not publicly available, we
could not provide the detailed class-wise scores. The com-
parison with CCL [3]] and ADAS [4] could only be reported
as in Tab. ?? of the main paper.

D.2. Synthetic to Real scenario: summary of all the
Settings.

In the main paper, we report in Tab. ?? the average
mloU considering all the possible target configurations on
the 79-classes Benchmark in the Synthetic to Real scenario.
We now report the results on the 7-classes Benchmark in
Tab. [AG In short, we observe that CoaST obtains perfor-
mance on par with ADAS [4]. CoaST obtains the pest aver-
age performance in three configurations over four. These
experiments demonstrate again the robustness of our ap-
proach.

D.3. Detailed Results of the Real to Real Settings

Here we show the comparison with MTKT in all the Real
to Real settings on the 7-class benchmark. We observe from
the Tab. that CoaST can clearly outperform MTKT in
all the real to real configurations. This again proves the
versatility of CoaST as it can yield better performance when
trained on both synthetic and real source domains.

D.4. Comparison with other MTDA methods.

In this section, we compare our methods with other
MTDA methods in the literature that have been proposed for
object recognition. Following CCL [3]], we report the num-
bers of CoaST on the 19-class benchmark in the Tab. [A8]
Note that only CCL [3]] and CoaST are specifically designed
for semantic segmentation. The baselines in the MTDA set-
ting [2} 6] that are designed for object recognition perform
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Figure A1l: Sensitivity analysis of our proposed CoaST for the 7-class MTDA configuration of GTAS — Cityscapes + IDD.
Left: we vary the pair-wise loss weight A\ and evaluate the mloU for the target domains. The performance curve remains
stable over a wide operating window, and starts to degrade only for extreme values of the A. Right: we vary the temperature
~ and evaluate the mIoU for the target domains. We notice that the average mloU varies slightly with . On the x-axis we

plot the logarithmic values of the hyperparameters for clarity

GTAS — Cityscapes + Mapillary
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Table A2: The comparison of CoaST with the state-of-the-art on the 7-classes benchmark using the GTAS — Cityscapes +
Mapillary configuration. We observe that CoaST outperforms MTKT on several classes and also on average

sub-optimally with respect CCL [3]]. However, CoaST sur-
passes CCL [3] by a non-trivial margin, validating the im-
portance of data driven image stylization for the MTDA in

semantic segmentation.

D.5. Direct Transfer to Unseen Domains

Similar to [8]], we directly test our adapted model on a
new (or unseen) target domain to evaluate the generaliza-

tion ability of our model. This setting is often referred to
as open-compound domain adaptation in the literature. In
the Tab. [A9] we report the comparison of the generaliza-
tion ability with other methods on 7-class benchmark. We
can observe that among considered MTDA baselines, our
CoaST has the best generalization ability. This hints at
the fact that our proposed cooperative self-training realized
with feature stylization can induce better generalizability.



GTAS — Mapillary + IDD

Method Target| flat constr object nature sky human vehicle mloU|Avg.

N T M [895 726 310 753 941 507 738 | 696
Individual [10] | 1115 531 160 782 907 479 1789 |65.1 |07

1T M [89.6 71.0 342 745 929 473 786 | 69.7
Data Comb. T101) 1 \g1 ¢ 540 174 769 923 514 784 | 66.0 |07

. | M 899 717 287 760 936 51.6 797 | 702
Multi-Dis 8] I |914 549 146 785 93.0 511 790 | 66.1 |%81
, M (888 732 315 747 941 525 799 | 70.7
MTKT (3] I |914 559 135 767 92.1 523 794 | 65.9 |98
M (905 759 372 73.6 90.8 575 813 | 72.4
I

93.3 609 198 793 912 54.1 82.6 | 68.7

CoaST (Ours) 70.6

Table A3: The comparison of CoaST with the state-of-the-art on the 7-classes benchmark using the GTAS — Mapillary +
IDD configuration. We observe that CoaST outperforms MTKT on several classes and also on average

GTAS — Cityscapes + Mapillary + IDD

Method Target| flat constr object nature sky human vehicle mIoU|Avg.
935 80.5 260 785 785 551 764 |69.8
89.5 72.6 31.0 753 94.1 50.7 73.8 | 69.6 |68.2
91.2 53.1 16.0 782 90.7 47.9 789 | 65.1
93.6 80.6 264 781 815 519 764 |69.8
89.2 724 324 73.0 927 41.6 749 | 68.0 |67.8
92.0 546 157 772 90.5 50.8 78.6 | 65.6
94.6 80.0 20.6 793 84.1 44.6 78.2 | 68.8
89.0 72.5 293 755 94.7 503 78.9 | 70.0 |68.2
91.6 542 13.1 784 93.1 496 803 | 65.8
94.6 80.7 238 79.0 845 510 792 |704
90.5 73.7 325 1755 943 512 80.2 | 71.1 [69.1
91.7 556 145 780 92.6 498 794 | 659
95.8 824 383 824 850 605 80.2 | 749
89.2 715 452 758 923 56.1 754 | 722|713
89.9 52.7 25.0 78.1 92.1 51.0 779 | 66.7
944 802 27.0 82.6 883 546 81.0 |72.6
91.7 749 362 739 920 575 795 | 722 |71.7
94.6 62.0 210 82.6 92.6 554 83.7 | 703

Individual [10]

Data Comb. [10]

Multi-Dis [8]

MTKT [8]

ADAS [4](1024 x 512)

CoaST (Ours)

Table A4: The comparison of CoaST with the state-of-the-art on the 7-classes benchmark using the GTAS — Cityscapes
+ Mapillary + IDD configuration. We observe that CoaST outperforms MTKT on several classes and also on average.
Particularly, the gain in performance for CoaST over MTKT for the IDD is fairly substantial
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Table AS: The detailed class-wise comparison of CoaST in the 19-class setting with the existing state-of-the-art methods.
In all the experiments, GTAS is considered as the source domain and the various combinations of the other benchmarks are
considered as the target domains. In all the configurations our CoaST clearly outperforms the existing baselines by a clear
margin



7-classes Benchmark

Target mloU mloU
CIM method C I M|Av
MTKT [8] 704659 - | 682

Vv +/ - |ADAS [4](1024 x 512)|75.4 66.9 - | 71.2
CoaST (Ours) 726700 - |71.3

MTKT [8] 711 - 70.8| 71.0
V/ - /|ADAS [4](1024 x 512)|75.3 - 72.6| 73.9

CoaST (Ours) 723 - 723|723
MTKT [8] - 65970.7| 68.3
-/ V|ADAS [4](1024 x 512)| - - - -
CoaST (Ours) - 68.772.4| 70.6
MTKT [8] 70.4 659 71.1| 69.1

V v/ V/|ADAS [@1(1024 x 512)|74.9 66.7 72.2| 71.3
CoaST (Ours)  |72.6 70.3 72.2| 71.7

Table A6: Summary of performances obtained on the 7-
classes Benchmark with different dataset configurations.
Cityscapes, IDD and Mapillary are referred to as C, I and
M respectively. We report the mIoU averaged over the tar-
get domains.

E. Visualization

To get insights about the cooperative rectification used
in our CoaST, we provide some visualization of the un-
certainty map estimated by our approach in Sec. [E.I] and
report a qualitative comparison with the state-of-the-art in

Sec.[E2]
E.1. Pseudo-label Uncertainty Maps

In the Fig. [A2] we show the uncertainty maps estimated
by CoaST for random training images on the 7-classes
benchmark. More precisely, we visualize the consistency
scores L, used in Eqn. ?? to estimate the rectification
weights, which we call as uncertainty maps. In addition,
we show the pseudo-label (PL) maps and the correspond-
ing error map. The error map is computed by subtracting
the PL map from the ground truth. From the Fig. [A2] we
can see that in most cases, regions with high uncertainty
(warm colors) correspond to errors while regions that are
correctly segmented have low uncertainty (dark blue). For
example, in the first part of the Fig.[A2Z] which show the vi-
sualizations from the Cityscapes data set, we can see that the
most uncertain regions correspond to the object boundaries
between classes. Since the object boundaries are the most
challenging regions for the model, the uncertainty maps are
especially bright for such regions. We can notice in the last
part of Fig. that for the IDD data set the regions with
multiple occlusions have high uncertainty.

Similarly, in Fig.[A3]| we also report the uncertainty map
obtained in the case of the /9-classes benchmark. Coherent

with the observations found for the 7-classes benchmark,
we again see that uncertain regions usually correspond to to
regions with errors.

E.2. State-of-the-art Qualitative Comparison

In addition to the qualitative comparisons provided in
the Fig. ?? of the main paper, we also report qualitative
comparisons on the 7-classes benchmark in the GTAS —
Cityscapes + Mapillary + IDD configuration. We compare
our proposed CoaST with MTKT in the Fig. [A4] In-line
with the observation from the main paper, we also find that
CoaST is better at segmenting small obscure objects from
the human class in the IDD data set. Success on the hard
classes eventually leads CoaST to reach improved numbers
over the existing state-of-the-art methods.



Cityscapes — Mapillary + IDD

Method |Target| flat constr object nature sky human vehicle mIoU Avg.

: M (883 704 316 759 944 509 77.0 | 69.8
MTKTIS] I |93.6 549 186 840 945 534 79.2 | 683 69.0

M (90.2 734 37.2 78.8 923 59.2 84.1 | 73.6

CoaST (Ours)l '\ 1951 580 266 854 93.0 590 839 |716 | %0

Mapillary — Cityscapes + IDD

Method |Target| flat constr object nature sky human vehicle mIoU Avg.
: C (947 819 356 83.0 84.7 57.0 839 | 744
MTKTIS] I (952 61.6 246 854 943 557 81.1 |71.1 721
C |956 844 36.7 839 88.2 58.2 85.8 |76.1
I

95.5 646 31.1 858 946 58.2 84.7 | 735
IDD — Cityscapes + Mapillary

CoaST (Ours) 74.8

Method |Target|flat constr object nature sky human vehicle mloU|Avg.

[ C [967 828 310 847 89.8 602 851 |758
MIKTISI |\ loog 712 338 79.1 958 553 79.0 |72.1 |7

C 1965 843 33.6 847 891 583 858 | 76.0
CoaST (Ours)l  \1 1910 763 397 822 960 59.0 83.1 |753 |

Table A7: The detailed comparison of CoaST with the state-of-the-art on the 7-classes benchmark in all Real to Real scenar-
ios. CoaST clearly outperforms MTKT in all the real to real configuration.

GTAS — Cityscapes + IDD

Setting| Method én IOI; Avg.
DG |Yueetal [11]|42.1 42.8|42.5
MTDA-ITA [2]]40.3 41.2|40.8
MT-MTDA 6] |43.2 44.0|43.6

CCL[3] |45.046.0/45.5

CoaST (Ours) |47.1 49.3|48.2

MTDA

Table AS8: The quantitative comparison of our CoaST with
different MTDA methods on the /9-class benchmark for
the GTA5 — Cityscapes + IDD configuration. CoaST out-
performs the considered MTDA baselines that are designed
for either object recognition or semantic segmentation. DG
stands for domain generalization setting and a method de-
signed for such a setting is also under performed by CoaST



Direct Transfer to an Unseen Target Domain

Setup Method Test| flat constr object nature sky human vehicle mIoU
Data Comb. [10] 884 71.0 310 724 92.0 374 747 | 66.7

G Cal Multi-Dis[8) M 89.2 72.1 21.7 738 940 348 759 | 659
MTKTI8] 89.8 74.0 304 74.1 93.6 52.6 794 | 70.6

CoaST (Ours) 91.6 739 348 77.8 930 57.7 819 | 729

Data Comb.[10] 91.6 547 139 765 909 483 77.5 | 64.8

G Ca+M Multi-Dis[S] I 91.2 546 129 77.7 925 503 78.6 | 654
MTKTI8] 91.5 56.1 123 76.1 909 514 792 | 654

CoaST (Ours) 93.2 597 171 80.1 91.0 51.7 81.2 | 67.7

Table A9: The quantitative comparison for direct transfer to new (or unseen) domains in 7-class benchmark. GTAS,
Cityscapes, Mapillary and IDD are referred to as G, C, M and I, respectively. The Test column denotes the unseen tar-
get domain where the models have been evaluated
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Figure A2: Visualization of uncertainty maps (or rectification weights) estimated by CoaST for the 7-class benchmark in the
GTAS — Cityscapes + Mapillary + IDD configuration. The error maps are computed by subtracting the peusdo-labels from
the ground truth. The uncertainty maps can be seen to be correctly correlated with the error maps



Cityscapes
Pseudo-labels Error Ma

T

Uncertainty

Input Image Ground Truth

<L

Mapillary

Input Image Ground Truth ~ Pseudo-labels Error Map Uncertainty

IDD
Ground Truth  Pseudo-labels

Figure A3: Visualization of uncertainty maps (or rectification weights) estimated by CoaST for the /9-class benchmark in
the GTAS — Cityscapes + Mapillary + IDD configuration. The error maps are computed by subtracting the peusdo-labels
from the ground truth. The uncertainty maps can be seen to be correctly correlated with the error maps
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Figure A4: Qualitative comparisons of state-of-the-art predictions for the 7-classes benchmark in the GTAS — Cityscapes +
Mapillary + IDD configuration
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